Localized Supervised Metric Learning on Temporal Physiological Data
Effective patient similarity assessment is important for clinical decision support. It enables the capture of past experience as manifested in the collective longitudinal medical records of patients to help clinicians assess the likely outcomes resulting from their decisions and actions. However, it...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Effective patient similarity assessment is important for clinical decision support. It enables the capture of past experience as manifested in the collective longitudinal medical records of patients to help clinicians assess the likely outcomes resulting from their decisions and actions. However, it is challenging to devise a patient similarity metric that is clinically relevant and semantically sound. Patient similarity is highly context sensitive: it depends on factors such as the disease, the particular stage of the disease, and co-morbidities. One way to discern the semantics in a particular context is to take advantage of physicians' expert knowledge as reflected in labels assigned to some patients. In this paper we present a method that leverages localized supervised metric learning to effectively incorporate such expert knowledge to arrive at semantically sound patient similarity measures. Experiments using data obtained from the MIMIC II database demonstrate the effectiveness of this approach. |
---|---|
ISSN: | 1051-4651 2831-7475 |
DOI: | 10.1109/ICPR.2010.1009 |