AR-PCA-HMM Approach for Sensorimotor Task Classification in EEG-based Brain-Computer Interfaces

We propose an approach based on Hidden Markov models (HMMs) combined with principal component analysis (PCA) for classification of four-class single trial motor imagery EEG data for brain computer interfacing (BCI) purposes. We extract autoregressive (AR) parameters from EEG data and use PCA to decr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Argunşah, Ali Özgür, Çetin, Müjdat
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose an approach based on Hidden Markov models (HMMs) combined with principal component analysis (PCA) for classification of four-class single trial motor imagery EEG data for brain computer interfacing (BCI) purposes. We extract autoregressive (AR) parameters from EEG data and use PCA to decrease the number of features for better training of HMMs. We present experimental results demonstrating the improvements provided by our approach over an existing HMM-based EEG single trial classification approach as well as over state-of-the-art classification methods.
ISSN:1051-4651
2831-7475
DOI:10.1109/ICPR.2010.36