A Framework for Hand Gesture Recognition and Spotting Using Sub-gesture Modeling
Hand gesture interpretation is an open research problem in Human Computer Interaction (HCI), which involves locating gesture boundaries (Gesture Spotting) in a continuous video sequence and recognizing the gesture. Existing techniques model each gesture as a temporal sequence of visual features extr...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Hand gesture interpretation is an open research problem in Human Computer Interaction (HCI), which involves locating gesture boundaries (Gesture Spotting) in a continuous video sequence and recognizing the gesture. Existing techniques model each gesture as a temporal sequence of visual features extracted from individual frames which is not efficient due to the large variability of frames at different timestamps. In this paper, we propose a new sub-gesture modeling approach which represents each gesture as a sequence of fixed sub-gestures (a group of consecutive frames with locally coherent context) and provides a robust modeling of the visual features. We further extend this approach to the task of gesture spotting where the gesture boundaries are identified using a filler model and gesture completion model. Experimental results show that the proposed method outperforms state-of-the-art Hidden Conditional Random Fields (HCRF) based methods and baseline gesture spotting techniques. |
---|---|
ISSN: | 1051-4651 2831-7475 |
DOI: | 10.1109/ICPR.2010.921 |