The Balanced Accuracy and Its Posterior Distribution
Evaluating the performance of a classification algorithm critically requires a measure of the degree to which unseen examples have been identified with their correct class labels. In practice, generalizability is frequently estimated by averaging the accuracies obtained on individual cross-validatio...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Evaluating the performance of a classification algorithm critically requires a measure of the degree to which unseen examples have been identified with their correct class labels. In practice, generalizability is frequently estimated by averaging the accuracies obtained on individual cross-validation folds. This procedure, however, is problematic in two ways. First, it does not allow for the derivation of meaningful confidence intervals. Second, it leads to an optimistic estimate when a biased classifier is tested on an imbalanced dataset. We show that both problems can be overcome by replacing the conventional point estimate of accuracy by an estimate of the posterior distribution of the balanced accuracy. |
---|---|
ISSN: | 1051-4651 2831-7475 |
DOI: | 10.1109/ICPR.2010.764 |