A Framework for the Combination of Different Arabic Handwritten Word Recognition Systems
In this paper we present A Framework for the Combination of Different Arabic Handwritten Word Recognition Systems to achieve a decision with a higher performance. This performance can be expressed by lower rejection rates and higher recognition rates. The used methods range from voting schemes based...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we present A Framework for the Combination of Different Arabic Handwritten Word Recognition Systems to achieve a decision with a higher performance. This performance can be expressed by lower rejection rates and higher recognition rates. The used methods range from voting schemes based on results of different recognizer to a neural network decision based on normalized confidences. This work presents an extension of the well known combination methods for a large lexicon, an extension from maximum 30 classes (e.g., 10 classes for digits classification) to 937 classes for the IfN/ENIT-database. In addition, different reject rules based on the evaluation and analysis of individual and combined systems output are discussed. Different threshold function for reject levels are tested and evaluated. Tests with a set of recognizer, which participated in the ICDAR 2007 competition and based on set coming from the IfN/ENIT-database show that a word error rate (WER) of 5.29% without reject and with a reject rate less than 25% even a word error rate of less than 1%. |
---|---|
ISSN: | 1051-4651 2831-7475 |
DOI: | 10.1109/ICPR.2010.469 |