Exploiting data-flow for fault-tolerance in a wide-area parallel system
Wide-area parallel processing systems will soon be available to researchers to solve a range of problems. In these systems, it is certain that host failures and other faults will be a common occurrence. Unfortunately, most parallel processing systems have not been designed with fault-tolerance in mi...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Wide-area parallel processing systems will soon be available to researchers to solve a range of problems. In these systems, it is certain that host failures and other faults will be a common occurrence. Unfortunately, most parallel processing systems have not been designed with fault-tolerance in mind. Mentat is a high-performance object-oriented parallel processing system that is based on an extension of the data-flow model. The functional nature of data-flow enables both parallelism and fault-tolerance. In this paper, we exploit the data-flow underpinning of Mentat to provide easy-to-use and transparent fault-tolerance. We present results on both a small-scale network and a wide-area heterogeneous environment that consists of three sites: the National Center for Supercomputing Applications, the University of Virginia and the NASA Langley Research Center. |
---|---|
ISSN: | 1060-9857 2575-8462 |
DOI: | 10.1109/RELDIS.1996.559687 |