Forward-Backward Error: Automatic Detection of Tracking Failures

This paper proposes a novel method for tracking failure detection. The detection is based on the Forward-Backward error, i.e. the tracking is performed forward and backward in time and the discrepancies between these two trajectories are measured. We demonstrate that the proposed error enables relia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kalal, Zdenek, Mikolajczyk, Krystian, Matas, Jiri
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes a novel method for tracking failure detection. The detection is based on the Forward-Backward error, i.e. the tracking is performed forward and backward in time and the discrepancies between these two trajectories are measured. We demonstrate that the proposed error enables reliable detection of tracking failures and selection of reliable trajectories in video sequences. We demonstrate that the approach is complementary to commonly used normalized cross-correlation (NCC). Based on the error, we propose a novel object tracker called Median Flow. State-of-the-art performance is achieved on challenging benchmark video sequences which include non-rigid objects.
ISSN:1051-4651
2831-7475
DOI:10.1109/ICPR.2010.675