Edge Preserving Image Denoising in Reproducing Kernel Hilbert Spaces

The goal of this paper is the development of a novel approach for the problem of Noise Removal, based on the theory of Reproducing Kernels Hilbert Spaces (RKHS). The problem is cast as an optimization task in a RKHS, by taking advantage of the celebrated semi parametric Representer Theorem. Examples...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bouboulis, P, Theodoridis, S, Slavakis, K
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2663
container_issue
container_start_page 2660
container_title
container_volume
creator Bouboulis, P
Theodoridis, S
Slavakis, K
description The goal of this paper is the development of a novel approach for the problem of Noise Removal, based on the theory of Reproducing Kernels Hilbert Spaces (RKHS). The problem is cast as an optimization task in a RKHS, by taking advantage of the celebrated semi parametric Representer Theorem. Examples verify that in the presence of gaussian noise the proposed method performs relatively well compared to wavelet based techniques and outperforms them significantly in the presence of impulse or mixed noise.
doi_str_mv 10.1109/ICPR.2010.652
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5596011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5596011</ieee_id><sourcerecordid>5596011</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-8a6927e380b04c74e4137cfcf8fd175e6de8022651f9016e32f21e2a410c0a433</originalsourceid><addsrcrecordid>eNo1zktLw1AQBeDrC6w1S1du8gdSZ-a-kqWk1QYLltp9uUkm5UKahpsq-O9NUVfDdw4cRogHhBkiZE9Fvt7MCEYaTRciymyKipSyWqG6FBNKJSZ25JW4-y-IrsUEQWOijMZbEQ2DL4GMNVZrPRHzRb3neB144PDlu31cHNwYzLk7-uFs38Ub7sOx_qzOfOPQcRsvfVtyOMUfvat4uBc3jWsHjv7uVGxfFtt8mazeX4v8eZX4DE5J6kxGlmUKJajKKlYobdVUTdrUaDWbmlMgGt9sMkDDkhpCJqcQKnBKyql4_J31zLzrgz-48L3TOjOAKH8A3RNNiA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Edge Preserving Image Denoising in Reproducing Kernel Hilbert Spaces</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Bouboulis, P ; Theodoridis, S ; Slavakis, K</creator><creatorcontrib>Bouboulis, P ; Theodoridis, S ; Slavakis, K</creatorcontrib><description>The goal of this paper is the development of a novel approach for the problem of Noise Removal, based on the theory of Reproducing Kernels Hilbert Spaces (RKHS). The problem is cast as an optimization task in a RKHS, by taking advantage of the celebrated semi parametric Representer Theorem. Examples verify that in the presence of gaussian noise the proposed method performs relatively well compared to wavelet based techniques and outperforms them significantly in the presence of impulse or mixed noise.</description><identifier>ISSN: 1051-4651</identifier><identifier>ISBN: 1424475422</identifier><identifier>ISBN: 9781424475421</identifier><identifier>EISSN: 2831-7475</identifier><identifier>EISBN: 9781424475414</identifier><identifier>EISBN: 9780769541099</identifier><identifier>EISBN: 1424475414</identifier><identifier>EISBN: 0769541097</identifier><identifier>DOI: 10.1109/ICPR.2010.652</identifier><language>eng</language><publisher>IEEE</publisher><subject>Hilbert space ; Image denoising ; Image edge detection ; Kernel ; Noise ; Noise reduction ; Pixel</subject><ispartof>2010 20th International Conference on Pattern Recognition, 2010, p.2660-2663</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5596011$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5596011$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bouboulis, P</creatorcontrib><creatorcontrib>Theodoridis, S</creatorcontrib><creatorcontrib>Slavakis, K</creatorcontrib><title>Edge Preserving Image Denoising in Reproducing Kernel Hilbert Spaces</title><title>2010 20th International Conference on Pattern Recognition</title><addtitle>ICPR</addtitle><description>The goal of this paper is the development of a novel approach for the problem of Noise Removal, based on the theory of Reproducing Kernels Hilbert Spaces (RKHS). The problem is cast as an optimization task in a RKHS, by taking advantage of the celebrated semi parametric Representer Theorem. Examples verify that in the presence of gaussian noise the proposed method performs relatively well compared to wavelet based techniques and outperforms them significantly in the presence of impulse or mixed noise.</description><subject>Hilbert space</subject><subject>Image denoising</subject><subject>Image edge detection</subject><subject>Kernel</subject><subject>Noise</subject><subject>Noise reduction</subject><subject>Pixel</subject><issn>1051-4651</issn><issn>2831-7475</issn><isbn>1424475422</isbn><isbn>9781424475421</isbn><isbn>9781424475414</isbn><isbn>9780769541099</isbn><isbn>1424475414</isbn><isbn>0769541097</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1zktLw1AQBeDrC6w1S1du8gdSZ-a-kqWk1QYLltp9uUkm5UKahpsq-O9NUVfDdw4cRogHhBkiZE9Fvt7MCEYaTRciymyKipSyWqG6FBNKJSZ25JW4-y-IrsUEQWOijMZbEQ2DL4GMNVZrPRHzRb3neB144PDlu31cHNwYzLk7-uFs38Ub7sOx_qzOfOPQcRsvfVtyOMUfvat4uBc3jWsHjv7uVGxfFtt8mazeX4v8eZX4DE5J6kxGlmUKJajKKlYobdVUTdrUaDWbmlMgGt9sMkDDkhpCJqcQKnBKyql4_J31zLzrgz-48L3TOjOAKH8A3RNNiA</recordid><startdate>201008</startdate><enddate>201008</enddate><creator>Bouboulis, P</creator><creator>Theodoridis, S</creator><creator>Slavakis, K</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201008</creationdate><title>Edge Preserving Image Denoising in Reproducing Kernel Hilbert Spaces</title><author>Bouboulis, P ; Theodoridis, S ; Slavakis, K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-8a6927e380b04c74e4137cfcf8fd175e6de8022651f9016e32f21e2a410c0a433</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Hilbert space</topic><topic>Image denoising</topic><topic>Image edge detection</topic><topic>Kernel</topic><topic>Noise</topic><topic>Noise reduction</topic><topic>Pixel</topic><toplevel>online_resources</toplevel><creatorcontrib>Bouboulis, P</creatorcontrib><creatorcontrib>Theodoridis, S</creatorcontrib><creatorcontrib>Slavakis, K</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bouboulis, P</au><au>Theodoridis, S</au><au>Slavakis, K</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Edge Preserving Image Denoising in Reproducing Kernel Hilbert Spaces</atitle><btitle>2010 20th International Conference on Pattern Recognition</btitle><stitle>ICPR</stitle><date>2010-08</date><risdate>2010</risdate><spage>2660</spage><epage>2663</epage><pages>2660-2663</pages><issn>1051-4651</issn><eissn>2831-7475</eissn><isbn>1424475422</isbn><isbn>9781424475421</isbn><eisbn>9781424475414</eisbn><eisbn>9780769541099</eisbn><eisbn>1424475414</eisbn><eisbn>0769541097</eisbn><abstract>The goal of this paper is the development of a novel approach for the problem of Noise Removal, based on the theory of Reproducing Kernels Hilbert Spaces (RKHS). The problem is cast as an optimization task in a RKHS, by taking advantage of the celebrated semi parametric Representer Theorem. Examples verify that in the presence of gaussian noise the proposed method performs relatively well compared to wavelet based techniques and outperforms them significantly in the presence of impulse or mixed noise.</abstract><pub>IEEE</pub><doi>10.1109/ICPR.2010.652</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-4651
ispartof 2010 20th International Conference on Pattern Recognition, 2010, p.2660-2663
issn 1051-4651
2831-7475
language eng
recordid cdi_ieee_primary_5596011
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Hilbert space
Image denoising
Image edge detection
Kernel
Noise
Noise reduction
Pixel
title Edge Preserving Image Denoising in Reproducing Kernel Hilbert Spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T17%3A39%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Edge%20Preserving%20Image%20Denoising%20in%20Reproducing%20Kernel%20Hilbert%20Spaces&rft.btitle=2010%2020th%20International%20Conference%20on%20Pattern%20Recognition&rft.au=Bouboulis,%20P&rft.date=2010-08&rft.spage=2660&rft.epage=2663&rft.pages=2660-2663&rft.issn=1051-4651&rft.eissn=2831-7475&rft.isbn=1424475422&rft.isbn_list=9781424475421&rft_id=info:doi/10.1109/ICPR.2010.652&rft_dat=%3Cieee_6IE%3E5596011%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424475414&rft.eisbn_list=9780769541099&rft.eisbn_list=1424475414&rft.eisbn_list=0769541097&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5596011&rfr_iscdi=true