Edge Preserving Image Denoising in Reproducing Kernel Hilbert Spaces
The goal of this paper is the development of a novel approach for the problem of Noise Removal, based on the theory of Reproducing Kernels Hilbert Spaces (RKHS). The problem is cast as an optimization task in a RKHS, by taking advantage of the celebrated semi parametric Representer Theorem. Examples...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The goal of this paper is the development of a novel approach for the problem of Noise Removal, based on the theory of Reproducing Kernels Hilbert Spaces (RKHS). The problem is cast as an optimization task in a RKHS, by taking advantage of the celebrated semi parametric Representer Theorem. Examples verify that in the presence of gaussian noise the proposed method performs relatively well compared to wavelet based techniques and outperforms them significantly in the presence of impulse or mixed noise. |
---|---|
ISSN: | 1051-4651 2831-7475 |
DOI: | 10.1109/ICPR.2010.652 |