Ship motion prediction based on AGA-LSSVM

The nuclear function parameter and penalty parameter is a pivotal factor which decides performance of Least Squares Support Vector Machines (LSSVM). Common used parameters selection method for LSSVM is cross-validation, which is complicated calculation and takes a very long time. To solve these prob...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Huixuan Fu, Sheng Liu, Feng Sun
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The nuclear function parameter and penalty parameter is a pivotal factor which decides performance of Least Squares Support Vector Machines (LSSVM). Common used parameters selection method for LSSVM is cross-validation, which is complicated calculation and takes a very long time. To solve these problems, a new approach based on an adaptive genetic algorithm (AGA) was proposed, which automatically adjusts the parameters for LSSVM, this method selects crossover probability and mutation probability according to the fitness values of the object function, therefore reduces the convergence time and improves the precision of genetic algorithm (GA), insuring the accuracy of parameter selection. This method was applied to ship motion prediction, and simulation results showed the validity to improving the prediction accuracy.
ISSN:2152-7431
2152-744X
DOI:10.1109/ICMA.2010.5589093