Comparing the performance of the evolvable πGrammatical Evolution genotype-phenotype map to Grammatical Evolution in the dynamic Ms. Pac-Man environment
In this work, we examine the capabilities of two forms of mappings by means of Grammatical Evolution (GE) to successfully generate controllers by combining high-level functions in a dynamic environment. In this work we adopted the Ms. Pac-Man game as a benchmark test bed. We show that the standard G...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work, we examine the capabilities of two forms of mappings by means of Grammatical Evolution (GE) to successfully generate controllers by combining high-level functions in a dynamic environment. In this work we adopted the Ms. Pac-Man game as a benchmark test bed. We show that the standard GE mapping and Position Independent GE (πGE) mapping achieve similar performance in terms of maximising the score. We also show that the controllers produced by both approaches have an overall better performance in terms of maximising the score compared to a hand-coded agent. There are, however, significant differences in the controllers produced by these two approaches: standard GE produces more controllers with invalid code, whereas the opposite is seen with πGE. |
---|---|
ISSN: | 1089-778X 1941-0026 |
DOI: | 10.1109/CEC.2010.5586508 |