Autonomous Bee Colony Optimization for multi-objective function
An Autonomous Bee Colony Optimization (A-BCO) algorithm for solving multi-objective numerical problems is proposed. In contrast with previous Bee Colony algorithms, A-BCO utilizes a diversity-based performance metric to dynamically assess the archive set. This assessment is employed to adapt the bee...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An Autonomous Bee Colony Optimization (A-BCO) algorithm for solving multi-objective numerical problems is proposed. In contrast with previous Bee Colony algorithms, A-BCO utilizes a diversity-based performance metric to dynamically assess the archive set. This assessment is employed to adapt the bee colony structures and flying patterns. This self-adaptation feature is introduced to optimize the balance between exploration and exploitation during the search process. Moreover, the total number of search iterations is also determined/optimized by A-BCO, according to user pre-specified conditions, during the search process. We evaluate A-BCO upon numerical benchmark problems and the experimental results demonstrate the effectiveness and robustness of the proposed algorithm when compared with the Non-dominated Sorting Genetic Algorithm II and the latest Multi-objective Bee Colony Algorithm proposed to date. |
---|---|
ISSN: | 1089-778X 1941-0026 |
DOI: | 10.1109/CEC.2010.5586057 |