A Low-Cost, Low-Complexity, and Memory-Free Architecture of Novel Recursive DFT and IDFT Algorithms for DTMF Application

A low-computational complexity and low-cost recursive discrete Fourier transform (RDFT) design using the Chinese remainder theorem is proposed in this brief. The proposed algorithm reduces multiplications by 74% and additions by 73% compared to the latest RDFT algorithms. For computing the 212- and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. II, Express briefs Express briefs, 2010-09, Vol.57 (9), p.711-715
Hauptverfasser: Lai, Shin-Chi, Lei, Sheau-Fang, Juang, Wen-Ho, Luo, Ching-Hsing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A low-computational complexity and low-cost recursive discrete Fourier transform (RDFT) design using the Chinese remainder theorem is proposed in this brief. The proposed algorithm reduces multiplications by 74% and additions by 73% compared to the latest RDFT algorithms. For computing the 212- and 106-point DFT coefficients, the proposed design can shorten computing cycles by 47% compared with the latest architectures. The hardware resources for the proposed design only require 2 multipliers and 12 adders. The coefficient read-only memory storing the sine and cosine values can be reduced by 100% compared with other recursive algorithms. Therefore, the proposed algorithm is more suitable than other very large scale integration realizations.
ISSN:1549-7747
1558-3791
DOI:10.1109/TCSII.2010.2056413