Automatic segmentation of hard exudates in fundus images based on boosted soft segmentation

In this paper, we propose an effective framework to automatically segment hard exudates (HEs) in fundus images. Our framework is based on a coarse-to-fine strategy, as we first get a coarse result allowed of some negative samples, then eliminate the negative samples step by step. In our framework, w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Guoliang Fang, Nan Yang, Huchuan Lu, Kaisong Li
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we propose an effective framework to automatically segment hard exudates (HEs) in fundus images. Our framework is based on a coarse-to-fine strategy, as we first get a coarse result allowed of some negative samples, then eliminate the negative samples step by step. In our framework, we make the most of the multi-channel information by employing a boosted soft segmentation algorithm. Additionally, we develop a multi-scale background subtraction method to obtain the coarse segmentation result. After subtracting the optical disc (OD) region from the coarse result, the HEs are extracted by a SVM classifier. The main contributions of this paper are: (1) propose an efficient and robust framework for automatic HEs segmentation; (2) present a boosted soft segmentation algorithm to combine multi-channel information; (3) employ a double ring filter to segment the OD region. We perform our experiments on the pubic DIARETDB1 dateset, which consists of 89 fundus images. The performance of our algorithm is assessed on both lesion-based criterion and image-based criterion. Our experimental results show that the proposed algorithm is very effective and robust.
DOI:10.1109/ICICIP.2010.5564177