Velocity regulation of stepper motors amidst constant disturbances
To regulate the velocity of hybrid stepper motor motion control systems, a control law which exploits the nonlinear dynamics to create an analog positional control in conjunction with a traditional linear control is introduced. This nonlinear approach allows coarse position sensors to be used, inclu...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To regulate the velocity of hybrid stepper motor motion control systems, a control law which exploits the nonlinear dynamics to create an analog positional control in conjunction with a traditional linear control is introduced. This nonlinear approach allows coarse position sensors to be used, including position estimates based on back EMF measurements. Two specific compensators, i.e., velocity damping and integral control are analyzed in detail, then compared to each other and to open loop microstepping control. It is shown that velocity damping allows the design of the eigenvalues of the closed loop system and provides a linear system approach about a specified operating point. However, this operating point includes the value of external DC torque (drag), so the closed loop dynamics cannot be guaranteed amidst steady state torque fluctuations. Integral feedback (within a PID controller) improves upon velocity damping by not only allowing the design of the closed loop eigenvalues, but also by completely linearizing the system regardless of external DC torque values. |
---|---|
DOI: | 10.1109/CCA.1995.555900 |