Reliability Considerations and Fault-Handling Strategies for Multi-MW Modular Drive Systems

Shunt-interleaved electrical drive systems consisting of several parallel medium-voltage back-to-back converters enable power ratings of tens of MVA, low current distortions, and a very smooth air-gap torque. To meet stringent reliability and availability goals despite the large parts count, the mod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industry applications 2010-11, Vol.46 (6), p.2442-2451
Hauptverfasser: Geyer, Tobias, Schröder, Stefan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Shunt-interleaved electrical drive systems consisting of several parallel medium-voltage back-to-back converters enable power ratings of tens of MVA, low current distortions, and a very smooth air-gap torque. To meet stringent reliability and availability goals despite the large parts count, the modularity of the drive system needs to be exploited and a suitable fault-handling strategy that allows the exclusion and isolation of faulted threads is required. This avoids the shutdown of the complete system and enables the drive system to continue operation. If full power capability is also required in degraded mode operation, redundancy on a thread level needs to be added. Experimental results confirm that thread exclusion allows the isolation of the majority of faults without affecting the mechanical load. As the drive system continues to run, faulted threads can be repaired and then added on-the-fly to the running system by thread inclusion. As a result, the downtime of such a modular drive system is expected to not exceed a few hours per year.
ISSN:0093-9994
1939-9367
DOI:10.1109/TIA.2010.2070477