On the exact recovery of higher-order moments of noisy signals

The importance of moments in science and engineering, as witnessed by the continuous and wide applicability of second-order moments (correlations) and the use of their higher-order brethren is clearly unquestionable. Due to the predominance of digital, rather than analogue, signal processing, it is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Cheded, L.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The importance of moments in science and engineering, as witnessed by the continuous and wide applicability of second-order moments (correlations) and the use of their higher-order brethren is clearly unquestionable. Due to the predominance of digital, rather than analogue, signal processing, it is of practical importance to investigate the impact of amplitude quantization on the exact recovery of unquantized moments from their quantized counterparts. We extend the results of Cheded (see IEEE ICASSP'95, p.1816-19, Detroit, USA) to the more general and interesting case where no a priori knowledge of the quantizer input's membership of the class L/sub p/ is available. We introduce a new moment-sense input/output function h/sub p/(x) that statistically characterizes the quantizer. Two new theorems are also stated that solve the exact moment recovery problem. Finally, two approaches to this problem are presented with some simulation results: based on a 1-bit quantizer, that substantiate very well the theory.
DOI:10.1109/DSPWS.1996.555519