Linear Quadratic Regulator and Fuzzy controller application in full-car model of suspension system with Magnetorheological shock absorber
A novel semi-active control system for suspension systems of passenger car using Magnetorheological (MR) damper is introduced. The suspension system is considered as a mass-spring model with a seven-degrees-of-freedom, a passive damper and an active damper. The semi-active vibration control is desig...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A novel semi-active control system for suspension systems of passenger car using Magnetorheological (MR) damper is introduced. The suspension system is considered as a mass-spring model with a seven-degrees-of-freedom, a passive damper and an active damper. The semi-active vibration control is designed to reduce the amplitude of automotive vibration caused by the alteration of road profile. The control mechanism is designed based on the optimal control algorithm and Fuzzy logic, Linear Quadratic Regulator (LQR) and Fuzzy controller. In this system, the damping coefficient of the shock absorber changes actively through inducing magnetic field. It is observed that utilizing the present control algorithm may significantly reduce the vibration response of the passenger car and eliminate effect of the disturbance in the system, thus, providing comfortable drive. The new developed suspension system may lead to design and manufacturing of passenger car in which the passenger may not feel the changes in road profile from highly bumpy to smooth profile. |
---|---|
DOI: | 10.1109/MESA.2010.5552010 |