Verification of a CAN bus model in SystemC with functional coverage
Many heterogeneous embedded systems, for example industrial automation and automotive applications, require hard-real time constraints to be exhaustively verified - which is a challenging task for the verification engineer. To cope with complexity, verification techniques working on different abstra...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Many heterogeneous embedded systems, for example industrial automation and automotive applications, require hard-real time constraints to be exhaustively verified - which is a challenging task for the verification engineer. To cope with complexity, verification techniques working on different abstraction levels are best practice. SystemC is a versatile C++ based design and verification language, offering various mechanisms and constructs required for embedded systems modeling. Using the add-on SystemC Verification Library (SCV) elemental constrained-random stimuli techniques may be used for verification. However, SCV has several drawbacks such as lack of functional coverage. In this paper we present a functional coverage library that implements parts of the IEEE 1800-2005 SystemVerilog standard and allows capturing functional coverage throughout the design and verification process with SystemC. Moreover, we will demonstrate the usability of the approach with a case study working on a CAN bus model written in SystemC. |
---|---|
ISSN: | 2150-3109 2150-3117 |
DOI: | 10.1109/SIES.2010.5551379 |