A Quantum Version of Wielandt's Inequality

In this paper, Wielandt's inequality for classical channels is extended to quantum channels. That is, an upper bound to the number of times a channel must be applied, so that it maps any density operator to one with full rank, is found. Using this bound, dichotomy theorems for the zero-error ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2010-09, Vol.56 (9), p.4668-4673
Hauptverfasser: Sanz, M, Pérez-García, David, Wolf, M M, Cirac, J I
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, Wielandt's inequality for classical channels is extended to quantum channels. That is, an upper bound to the number of times a channel must be applied, so that it maps any density operator to one with full rank, is found. Using this bound, dichotomy theorems for the zero-error capacity of quantum channels and for the Matrix Product State (MPS) dimension of ground states of frustration-free Hamiltonians are derived. The obtained inequalities also imply new bounds on the required interaction-range of Hamiltonians with unique MPS ground state.
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2010.2054552