Fault-tolerant defect prediction in high-precision foundry
High-precision foundry production is subjected to rigorous quality controls in order to ensure a proper result. Such exams, however, are extremely expensive and only achieve good results in a posteriori fashion. In previous works, we presented a defect prediction system that achieved a 99% success r...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | High-precision foundry production is subjected to rigorous quality controls in order to ensure a proper result. Such exams, however, are extremely expensive and only achieve good results in a posteriori fashion. In previous works, we presented a defect prediction system that achieved a 99% success rate. Still, this approach did not take into account sufficiently the geometry of the casting part models, resulting in higher raw material requirements to guarantee an appropriate outcome. In this paper, we present here a fault-tolerant software solution for casting defect prediction that is able to detect possible defects directly in the design phase by analysing the volume of three-dimensional models. To this end, we propose advanced algorithms to recreate the topology of each foundry part, analyze its volume and simulate the casting procedure, all of them specifically designed for an robust implementation over the latest graphic hardware that ensures an interactive design process. |
---|---|
ISSN: | 1935-4576 2378-363X |
DOI: | 10.1109/INDIN.2010.5549392 |