Risk-sensitive optimal control for stochastic recurrent neural networks
As a continuation of our study, this paper extends our research results of optimality-oriented control from deterministic recurrent neural networks to stochastic recurrent neural networks, and presents a new theoretical design for the risk-sensitive optimal control of stochastic recurrent neural net...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | As a continuation of our study, this paper extends our research results of optimality-oriented control from deterministic recurrent neural networks to stochastic recurrent neural networks, and presents a new theoretical design for the risk-sensitive optimal control of stochastic recurrent neural networks. The design procedure follows the technique of inverse optimality, and obtains risk-sensitive state feedback controllers that guarantee an achievable meaningful cost for a given risk-sensitivity parameter. |
---|---|
ISSN: | 1548-3746 1558-3899 |
DOI: | 10.1109/MWSCAS.2010.5548858 |