Risk-sensitive optimal control for stochastic recurrent neural networks

As a continuation of our study, this paper extends our research results of optimality-oriented control from deterministic recurrent neural networks to stochastic recurrent neural networks, and presents a new theoretical design for the risk-sensitive optimal control of stochastic recurrent neural net...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ziqian Liu, Torres, R E, Kotinis, M
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As a continuation of our study, this paper extends our research results of optimality-oriented control from deterministic recurrent neural networks to stochastic recurrent neural networks, and presents a new theoretical design for the risk-sensitive optimal control of stochastic recurrent neural networks. The design procedure follows the technique of inverse optimality, and obtains risk-sensitive state feedback controllers that guarantee an achievable meaningful cost for a given risk-sensitivity parameter.
ISSN:1548-3746
1558-3899
DOI:10.1109/MWSCAS.2010.5548858