AutomaDeD: Automata-based debugging for dissimilar parallel tasks

Today's largest systems have over 100,000 cores, with million-core systems expected over the next few years. This growing scale makes debugging the applications that run on them a daunting challenge. Few debugging tools perform well at this scale and most provide an overload of information abou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bronevetsky, G, Laguna, I, Bagchi, S, de Supinski, B R, Ahn, D H, Schulz, M
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Today's largest systems have over 100,000 cores, with million-core systems expected over the next few years. This growing scale makes debugging the applications that run on them a daunting challenge. Few debugging tools perform well at this scale and most provide an overload of information about the entire job. Developers need tools that quickly direct them to the root cause of the problem. This paper presents AutomaDeD, a tool that identifies which tasks of a large-scale application first manifest a bug at a specific code region and specific program execution point. AutomaDeD statistically models the application's control-flow and timing behavior, grouping tasks and identifying deviations from normal execution, which significantly reduces debugging effort. In addition to a case study in which AutomaDeD locates a bug that occurred during development of MVAPICH, we evaluate AutomaDeD on a range of bugs injected into the NAS parallel benchmarks. Our results demonstrate that AutomaDeD detects the time period when a bug first manifested with 90% accuracy for stalls and hangs and 70% accuracy for interference faults. It identifies the subset of processes first affected by the fault with 80% accuracy and 70% accuracy, respectively and the code region where the fault first manifested with 90% and 50% accuracy, respectively.
ISSN:1530-0889
2158-3927
DOI:10.1109/DSN.2010.5544927