Constrained parametric min-cuts for automatic object segmentation

We present a novel framework for generating and ranking plausible objects hypotheses in an image using bottom-up processes and mid-level cues. The object hypotheses are represented as figure-ground segmentations, and are extracted automatically, without prior knowledge about properties of individual...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Carreira, Joao, Sminchisescu, Cristian
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3248
container_issue
container_start_page 3241
container_title
container_volume
creator Carreira, Joao
Sminchisescu, Cristian
description We present a novel framework for generating and ranking plausible objects hypotheses in an image using bottom-up processes and mid-level cues. The object hypotheses are represented as figure-ground segmentations, and are extracted automatically, without prior knowledge about properties of individual object classes, by solving a sequence of constrained parametric min-cut problems (CPMC) on a regular image grid. We then learn to rank the object hypotheses by training a continuous model to predict how plausible the segments are, given their mid-level region properties. We show that this algorithm significantly outperforms the state of the art for low-level segmentation in the VOC09 segmentation dataset. It achieves the same average best segmentation covering as the best performing technique to date, 0.61 when using just the top 7 ranked segments, instead of the full hierarchy in. Our method achieves 0.78 average best covering using 154 segments. In a companion paper, we also show that the algorithm achieves state-of-the art results when used in a segmentation-based recognition pipeline.
doi_str_mv 10.1109/CVPR.2010.5540063
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5540063</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5540063</ieee_id><sourcerecordid>5540063</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-98f9387659739342136d7492a5435ecd55657d31a667310e6060afb6b90a8c213</originalsourceid><addsrcrecordid>eNpFj81Kw0AUhUdUsK0-gLjJC6Te-bszsyzBPyhYioq7MpncSIpJysx04dsbsODq8B0-DhzGbjksOQd3X31stksBE2qtAFCesTlXQil0Vn6e_4OyF2zGJ6FEx90Vm6e0BxDSCJixVTUOKUffDdQUBx99Tzl2oei7oQzHnIp2jIU_5rH3earHek8hF4m-ehryVI3DNbts_Xeim1Mu2Pvjw1v1XK5fn16q1boMwrpcOts6aQ1qZ6STSnCJjVFOeK2kptBojdo0kntEIzkQAoJva6wdeBsmfcHu_nY7ItodYtf7-LM7fZe_As9KmA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Constrained parametric min-cuts for automatic object segmentation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Carreira, Joao ; Sminchisescu, Cristian</creator><creatorcontrib>Carreira, Joao ; Sminchisescu, Cristian</creatorcontrib><description>We present a novel framework for generating and ranking plausible objects hypotheses in an image using bottom-up processes and mid-level cues. The object hypotheses are represented as figure-ground segmentations, and are extracted automatically, without prior knowledge about properties of individual object classes, by solving a sequence of constrained parametric min-cut problems (CPMC) on a regular image grid. We then learn to rank the object hypotheses by training a continuous model to predict how plausible the segments are, given their mid-level region properties. We show that this algorithm significantly outperforms the state of the art for low-level segmentation in the VOC09 segmentation dataset. It achieves the same average best segmentation covering as the best performing technique to date, 0.61 when using just the top 7 ranked segments, instead of the full hierarchy in. Our method achieves 0.78 average best covering using 154 segments. In a companion paper, we also show that the algorithm achieves state-of-the art results when used in a segmentation-based recognition pipeline.</description><identifier>ISSN: 1063-6919</identifier><identifier>ISBN: 1424469848</identifier><identifier>ISBN: 9781424469840</identifier><identifier>EISBN: 142446983X</identifier><identifier>EISBN: 9781424469833</identifier><identifier>EISBN: 9781424469857</identifier><identifier>EISBN: 1424469856</identifier><identifier>DOI: 10.1109/CVPR.2010.5540063</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer vision ; Humans ; Image segmentation ; Machine learning ; Machine learning algorithms ; Mathematics ; Numerical simulation ; Object segmentation ; Predictive models</subject><ispartof>2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010, p.3241-3248</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c289t-98f9387659739342136d7492a5435ecd55657d31a667310e6060afb6b90a8c213</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5540063$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5540063$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Carreira, Joao</creatorcontrib><creatorcontrib>Sminchisescu, Cristian</creatorcontrib><title>Constrained parametric min-cuts for automatic object segmentation</title><title>2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition</title><addtitle>CVPR</addtitle><description>We present a novel framework for generating and ranking plausible objects hypotheses in an image using bottom-up processes and mid-level cues. The object hypotheses are represented as figure-ground segmentations, and are extracted automatically, without prior knowledge about properties of individual object classes, by solving a sequence of constrained parametric min-cut problems (CPMC) on a regular image grid. We then learn to rank the object hypotheses by training a continuous model to predict how plausible the segments are, given their mid-level region properties. We show that this algorithm significantly outperforms the state of the art for low-level segmentation in the VOC09 segmentation dataset. It achieves the same average best segmentation covering as the best performing technique to date, 0.61 when using just the top 7 ranked segments, instead of the full hierarchy in. Our method achieves 0.78 average best covering using 154 segments. In a companion paper, we also show that the algorithm achieves state-of-the art results when used in a segmentation-based recognition pipeline.</description><subject>Computer vision</subject><subject>Humans</subject><subject>Image segmentation</subject><subject>Machine learning</subject><subject>Machine learning algorithms</subject><subject>Mathematics</subject><subject>Numerical simulation</subject><subject>Object segmentation</subject><subject>Predictive models</subject><issn>1063-6919</issn><isbn>1424469848</isbn><isbn>9781424469840</isbn><isbn>142446983X</isbn><isbn>9781424469833</isbn><isbn>9781424469857</isbn><isbn>1424469856</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFj81Kw0AUhUdUsK0-gLjJC6Te-bszsyzBPyhYioq7MpncSIpJysx04dsbsODq8B0-DhzGbjksOQd3X31stksBE2qtAFCesTlXQil0Vn6e_4OyF2zGJ6FEx90Vm6e0BxDSCJixVTUOKUffDdQUBx99Tzl2oei7oQzHnIp2jIU_5rH3earHek8hF4m-ehryVI3DNbts_Xeim1Mu2Pvjw1v1XK5fn16q1boMwrpcOts6aQ1qZ6STSnCJjVFOeK2kptBojdo0kntEIzkQAoJva6wdeBsmfcHu_nY7ItodYtf7-LM7fZe_As9KmA</recordid><startdate>201006</startdate><enddate>201006</enddate><creator>Carreira, Joao</creator><creator>Sminchisescu, Cristian</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201006</creationdate><title>Constrained parametric min-cuts for automatic object segmentation</title><author>Carreira, Joao ; Sminchisescu, Cristian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-98f9387659739342136d7492a5435ecd55657d31a667310e6060afb6b90a8c213</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Computer vision</topic><topic>Humans</topic><topic>Image segmentation</topic><topic>Machine learning</topic><topic>Machine learning algorithms</topic><topic>Mathematics</topic><topic>Numerical simulation</topic><topic>Object segmentation</topic><topic>Predictive models</topic><toplevel>online_resources</toplevel><creatorcontrib>Carreira, Joao</creatorcontrib><creatorcontrib>Sminchisescu, Cristian</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Carreira, Joao</au><au>Sminchisescu, Cristian</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Constrained parametric min-cuts for automatic object segmentation</atitle><btitle>2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition</btitle><stitle>CVPR</stitle><date>2010-06</date><risdate>2010</risdate><spage>3241</spage><epage>3248</epage><pages>3241-3248</pages><issn>1063-6919</issn><isbn>1424469848</isbn><isbn>9781424469840</isbn><eisbn>142446983X</eisbn><eisbn>9781424469833</eisbn><eisbn>9781424469857</eisbn><eisbn>1424469856</eisbn><abstract>We present a novel framework for generating and ranking plausible objects hypotheses in an image using bottom-up processes and mid-level cues. The object hypotheses are represented as figure-ground segmentations, and are extracted automatically, without prior knowledge about properties of individual object classes, by solving a sequence of constrained parametric min-cut problems (CPMC) on a regular image grid. We then learn to rank the object hypotheses by training a continuous model to predict how plausible the segments are, given their mid-level region properties. We show that this algorithm significantly outperforms the state of the art for low-level segmentation in the VOC09 segmentation dataset. It achieves the same average best segmentation covering as the best performing technique to date, 0.61 when using just the top 7 ranked segments, instead of the full hierarchy in. Our method achieves 0.78 average best covering using 154 segments. In a companion paper, we also show that the algorithm achieves state-of-the art results when used in a segmentation-based recognition pipeline.</abstract><pub>IEEE</pub><doi>10.1109/CVPR.2010.5540063</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6919
ispartof 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010, p.3241-3248
issn 1063-6919
language eng
recordid cdi_ieee_primary_5540063
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computer vision
Humans
Image segmentation
Machine learning
Machine learning algorithms
Mathematics
Numerical simulation
Object segmentation
Predictive models
title Constrained parametric min-cuts for automatic object segmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A17%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Constrained%20parametric%20min-cuts%20for%20automatic%20object%20segmentation&rft.btitle=2010%20IEEE%20Computer%20Society%20Conference%20on%20Computer%20Vision%20and%20Pattern%20Recognition&rft.au=Carreira,%20Joao&rft.date=2010-06&rft.spage=3241&rft.epage=3248&rft.pages=3241-3248&rft.issn=1063-6919&rft.isbn=1424469848&rft.isbn_list=9781424469840&rft_id=info:doi/10.1109/CVPR.2010.5540063&rft_dat=%3Cieee_6IE%3E5540063%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=142446983X&rft.eisbn_list=9781424469833&rft.eisbn_list=9781424469857&rft.eisbn_list=1424469856&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5540063&rfr_iscdi=true