Constrained parametric min-cuts for automatic object segmentation
We present a novel framework for generating and ranking plausible objects hypotheses in an image using bottom-up processes and mid-level cues. The object hypotheses are represented as figure-ground segmentations, and are extracted automatically, without prior knowledge about properties of individual...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a novel framework for generating and ranking plausible objects hypotheses in an image using bottom-up processes and mid-level cues. The object hypotheses are represented as figure-ground segmentations, and are extracted automatically, without prior knowledge about properties of individual object classes, by solving a sequence of constrained parametric min-cut problems (CPMC) on a regular image grid. We then learn to rank the object hypotheses by training a continuous model to predict how plausible the segments are, given their mid-level region properties. We show that this algorithm significantly outperforms the state of the art for low-level segmentation in the VOC09 segmentation dataset. It achieves the same average best segmentation covering as the best performing technique to date, 0.61 when using just the top 7 ranked segments, instead of the full hierarchy in. Our method achieves 0.78 average best covering using 154 segments. In a companion paper, we also show that the algorithm achieves state-of-the art results when used in a segmentation-based recognition pipeline. |
---|---|
ISSN: | 1063-6919 |
DOI: | 10.1109/CVPR.2010.5540063 |