Data driven mean-shift belief propagation for non-gaussian MRFs
We introduce a novel data-driven mean-shift belief propagation (DDMSBP) method for non-Gaussian MRFs, which often arise in computer vision applications. With the aid of scale space theory, optimization of non-Gaussian, multimodal MRF models using DDMSBP becomes less sensitive to local maxima. This i...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduce a novel data-driven mean-shift belief propagation (DDMSBP) method for non-Gaussian MRFs, which often arise in computer vision applications. With the aid of scale space theory, optimization of non-Gaussian, multimodal MRF models using DDMSBP becomes less sensitive to local maxima. This is a significant improvement over standard BP inference, and extends the range of methods that are computationally tractable. In particular, when pair-wise potentials are Gaussians, the time complexity of DDMSBP becomes bilinear in the numbers of states and nodes in the MRF. Experimental results from simulation and non-rigid deformable neuroimage registration demonstrate that our method is faster and more accurate than state-of-the-art inference algorithms. |
---|---|
ISSN: | 1063-6919 |
DOI: | 10.1109/CVPR.2010.5539946 |