Energy profile of a microcontroller for neural prosthetic application

A third-generation microcontroller has been designed to operate as a control element in an embedded wireless neural interface system. This design was fabricated in the IBM 65nm CMOS process. We present an analysis of the energy profile of the fabricated microcontroller by measuring the energy to exe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kellis, S, Gaskin, N, Redd, B, Campbell, J, Brown, R
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3844
container_issue
container_start_page 3841
container_title
container_volume
creator Kellis, S
Gaskin, N
Redd, B
Campbell, J
Brown, R
description A third-generation microcontroller has been designed to operate as a control element in an embedded wireless neural interface system. This design was fabricated in the IBM 65nm CMOS process. We present an analysis of the energy profile of the fabricated microcontroller by measuring the energy to execute each family of instructions. We also investigate the efficiency of new instructions for block transfers. Finally, we discuss implications of these results for energy-efficient operation. The fabricated chip is operational at up to 150MHz. With a core power supply of 0.8V, the chip consumes 350uW at 10MHz. The new block transfer instructions are as much as 44% more efficient than traditional load-store sequences for saving registers to memory, and up to 15% more efficient when transferring 16-byte chunks of data.
doi_str_mv 10.1109/ISCAS.2010.5537715
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5537715</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5537715</ieee_id><sourcerecordid>5537715</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-73fca6fb12476fd1fdae7ced22c403c2667734d5898f51ffb3d07e0fc196a35f3</originalsourceid><addsrcrecordid>eNo1kEtOwzAYhM2jEqHkArDxBVL8drysogCVKrFo95Xr-AcjN46csOjtCaLMZjT6RrMYhB4pWVFKzPNm16x3K0bmLCXXmsorVBpdU8GEkJwYdo0KRmVdUcnkDbr_B7W5RQVhmlaCE7ZARU0qJdRM7lA5jl9klpBMcV2gtu19_jjjIScI0eME2OJTcDm51E85xegzhpRx77-zjb-9cfr0U3DYDkMMzk4h9Q9oATaOvrz4Eu1f2n3zVm3fXzfNelsFQ6ZKc3BWwZEyoRV0FDrrtfMdY04Q7phSWnPRydrUICnAkXdEewKOGmW5BL5ET3-zwXt_GHI42Xw-XM7hP6iIUww</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Energy profile of a microcontroller for neural prosthetic application</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kellis, S ; Gaskin, N ; Redd, B ; Campbell, J ; Brown, R</creator><creatorcontrib>Kellis, S ; Gaskin, N ; Redd, B ; Campbell, J ; Brown, R</creatorcontrib><description>A third-generation microcontroller has been designed to operate as a control element in an embedded wireless neural interface system. This design was fabricated in the IBM 65nm CMOS process. We present an analysis of the energy profile of the fabricated microcontroller by measuring the energy to execute each family of instructions. We also investigate the efficiency of new instructions for block transfers. Finally, we discuss implications of these results for energy-efficient operation. The fabricated chip is operational at up to 150MHz. With a core power supply of 0.8V, the chip consumes 350uW at 10MHz. The new block transfer instructions are as much as 44% more efficient than traditional load-store sequences for saving registers to memory, and up to 15% more efficient when transferring 16-byte chunks of data.</description><identifier>ISSN: 0271-4302</identifier><identifier>ISBN: 1424453089</identifier><identifier>ISBN: 9781424453085</identifier><identifier>EISSN: 2158-1525</identifier><identifier>EISBN: 9781424453092</identifier><identifier>EISBN: 1424453097</identifier><identifier>DOI: 10.1109/ISCAS.2010.5537715</identifier><identifier>LCCN: 80-646530</identifier><language>eng</language><publisher>IEEE</publisher><subject>CMOS process ; Energy efficiency ; Hardware ; Memory architecture ; Microcontrollers ; Pipelines ; Power supplies ; Prosthetics ; Random access memory ; Registers</subject><ispartof>2010 IEEE International Symposium on Circuits and Systems (ISCAS), 2010, p.3841-3844</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5537715$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5537715$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kellis, S</creatorcontrib><creatorcontrib>Gaskin, N</creatorcontrib><creatorcontrib>Redd, B</creatorcontrib><creatorcontrib>Campbell, J</creatorcontrib><creatorcontrib>Brown, R</creatorcontrib><title>Energy profile of a microcontroller for neural prosthetic application</title><title>2010 IEEE International Symposium on Circuits and Systems (ISCAS)</title><addtitle>ISCAS</addtitle><description>A third-generation microcontroller has been designed to operate as a control element in an embedded wireless neural interface system. This design was fabricated in the IBM 65nm CMOS process. We present an analysis of the energy profile of the fabricated microcontroller by measuring the energy to execute each family of instructions. We also investigate the efficiency of new instructions for block transfers. Finally, we discuss implications of these results for energy-efficient operation. The fabricated chip is operational at up to 150MHz. With a core power supply of 0.8V, the chip consumes 350uW at 10MHz. The new block transfer instructions are as much as 44% more efficient than traditional load-store sequences for saving registers to memory, and up to 15% more efficient when transferring 16-byte chunks of data.</description><subject>CMOS process</subject><subject>Energy efficiency</subject><subject>Hardware</subject><subject>Memory architecture</subject><subject>Microcontrollers</subject><subject>Pipelines</subject><subject>Power supplies</subject><subject>Prosthetics</subject><subject>Random access memory</subject><subject>Registers</subject><issn>0271-4302</issn><issn>2158-1525</issn><isbn>1424453089</isbn><isbn>9781424453085</isbn><isbn>9781424453092</isbn><isbn>1424453097</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kEtOwzAYhM2jEqHkArDxBVL8drysogCVKrFo95Xr-AcjN46csOjtCaLMZjT6RrMYhB4pWVFKzPNm16x3K0bmLCXXmsorVBpdU8GEkJwYdo0KRmVdUcnkDbr_B7W5RQVhmlaCE7ZARU0qJdRM7lA5jl9klpBMcV2gtu19_jjjIScI0eME2OJTcDm51E85xegzhpRx77-zjb-9cfr0U3DYDkMMzk4h9Q9oATaOvrz4Eu1f2n3zVm3fXzfNelsFQ6ZKc3BWwZEyoRV0FDrrtfMdY04Q7phSWnPRydrUICnAkXdEewKOGmW5BL5ET3-zwXt_GHI42Xw-XM7hP6iIUww</recordid><startdate>201005</startdate><enddate>201005</enddate><creator>Kellis, S</creator><creator>Gaskin, N</creator><creator>Redd, B</creator><creator>Campbell, J</creator><creator>Brown, R</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201005</creationdate><title>Energy profile of a microcontroller for neural prosthetic application</title><author>Kellis, S ; Gaskin, N ; Redd, B ; Campbell, J ; Brown, R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-73fca6fb12476fd1fdae7ced22c403c2667734d5898f51ffb3d07e0fc196a35f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>CMOS process</topic><topic>Energy efficiency</topic><topic>Hardware</topic><topic>Memory architecture</topic><topic>Microcontrollers</topic><topic>Pipelines</topic><topic>Power supplies</topic><topic>Prosthetics</topic><topic>Random access memory</topic><topic>Registers</topic><toplevel>online_resources</toplevel><creatorcontrib>Kellis, S</creatorcontrib><creatorcontrib>Gaskin, N</creatorcontrib><creatorcontrib>Redd, B</creatorcontrib><creatorcontrib>Campbell, J</creatorcontrib><creatorcontrib>Brown, R</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kellis, S</au><au>Gaskin, N</au><au>Redd, B</au><au>Campbell, J</au><au>Brown, R</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Energy profile of a microcontroller for neural prosthetic application</atitle><btitle>2010 IEEE International Symposium on Circuits and Systems (ISCAS)</btitle><stitle>ISCAS</stitle><date>2010-05</date><risdate>2010</risdate><spage>3841</spage><epage>3844</epage><pages>3841-3844</pages><issn>0271-4302</issn><eissn>2158-1525</eissn><isbn>1424453089</isbn><isbn>9781424453085</isbn><eisbn>9781424453092</eisbn><eisbn>1424453097</eisbn><abstract>A third-generation microcontroller has been designed to operate as a control element in an embedded wireless neural interface system. This design was fabricated in the IBM 65nm CMOS process. We present an analysis of the energy profile of the fabricated microcontroller by measuring the energy to execute each family of instructions. We also investigate the efficiency of new instructions for block transfers. Finally, we discuss implications of these results for energy-efficient operation. The fabricated chip is operational at up to 150MHz. With a core power supply of 0.8V, the chip consumes 350uW at 10MHz. The new block transfer instructions are as much as 44% more efficient than traditional load-store sequences for saving registers to memory, and up to 15% more efficient when transferring 16-byte chunks of data.</abstract><pub>IEEE</pub><doi>10.1109/ISCAS.2010.5537715</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0271-4302
ispartof 2010 IEEE International Symposium on Circuits and Systems (ISCAS), 2010, p.3841-3844
issn 0271-4302
2158-1525
language eng
recordid cdi_ieee_primary_5537715
source IEEE Electronic Library (IEL) Conference Proceedings
subjects CMOS process
Energy efficiency
Hardware
Memory architecture
Microcontrollers
Pipelines
Power supplies
Prosthetics
Random access memory
Registers
title Energy profile of a microcontroller for neural prosthetic application
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T16%3A09%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Energy%20profile%20of%20a%20microcontroller%20for%20neural%20prosthetic%20application&rft.btitle=2010%20IEEE%20International%20Symposium%20on%20Circuits%20and%20Systems%20(ISCAS)&rft.au=Kellis,%20S&rft.date=2010-05&rft.spage=3841&rft.epage=3844&rft.pages=3841-3844&rft.issn=0271-4302&rft.eissn=2158-1525&rft.isbn=1424453089&rft.isbn_list=9781424453085&rft_id=info:doi/10.1109/ISCAS.2010.5537715&rft_dat=%3Cieee_6IE%3E5537715%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424453092&rft.eisbn_list=1424453097&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5537715&rfr_iscdi=true