Learning of a ball-in-a-cup playing robot

In the paper we evaluate two learning methods applied to the ball-in-a-cup game. The first approach is based on imitation learning. The captured trajectory was encoded with Dynamic motion primitives (DMP). The DMP approach allows simple adaptation of the demonstrated trajectory to the robot dynamics...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Nemec, Bojan, Zorko, Matej, Zlajpah, Leon
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the paper we evaluate two learning methods applied to the ball-in-a-cup game. The first approach is based on imitation learning. The captured trajectory was encoded with Dynamic motion primitives (DMP). The DMP approach allows simple adaptation of the demonstrated trajectory to the robot dynamics. In the second approach, we use reinforcement learning, which allows learning without any previous knowledge of the system or the environment. In contrast to the majority of the previous attempts, we used SASRA learning algorithm. Experimental results for both cases were performed on Mitsubishi PA10 robot arm.
DOI:10.1109/RAAD.2010.5524570