Performances comparison of different MEMS-based IMUs
MEMS inertial sensors are widely used for navigation applications where size, weight, power and cost are key sides, such as autonomous vehicular control and pedestrian navigation. Otherwise, if there is no doubt that MEMS technologies represents an interesting turning point for low cost inertial-bas...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | MEMS inertial sensors are widely used for navigation applications where size, weight, power and cost are key sides, such as autonomous vehicular control and pedestrian navigation. Otherwise, if there is no doubt that MEMS technologies represents an interesting turning point for low cost inertial-based sensors and applications, nevertheless it is absolutely true that, in order to obtain good positioning accuracies, it is necessary to investigate very well the behaviour of these MEMS sensors and realize special test calibrations, both in static and kinematic conditions. In order to evaluate the potentialities (and the limits) of these sensors, comparative tests have been realized considering MEMS inertial sensors with different characteristics and different performances, First of all, a static calibration of the sensors has been made, in order to compare the bias values and their stability with respect to the time. In particular, an Allan-variance analysis and a modified six position static test were carried out for each sensor, preserving carefully the same environment conditions for all the tests. After the lab tests, the performances of all the sensors were compared in a field kinematic test, integrating their data with a GPS solution. |
---|---|
ISSN: | 2153-358X 2153-3598 |
DOI: | 10.1109/PLANS.2010.5507128 |