Indirection systems for shingled-recording disk drives

Shingled magnetic recording is a promising technology to increase the capacity of hard-disk drives with no significant cost impact. Its main drawback is that random-write access to the disk is restricted due to overlap in the layout of data tracks. For computing and storage systems to enjoy the incr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Cassuto, Yuval, Sanvido, Marco A A, Guyot, Cyril, Hall, David R, Bandic, Zvonimir Z
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Shingled magnetic recording is a promising technology to increase the capacity of hard-disk drives with no significant cost impact. Its main drawback is that random-write access to the disk is restricted due to overlap in the layout of data tracks. For computing and storage systems to enjoy the increased capacity, it is necessary to mitigate these access restrictions, and present a storage device that serves unrestricted read/write requests with adequate performance. This paper proposes two different indirection systems to mask access restrictions and optimize performance. The first one is a diskcache based architecture that provides unrestricted access with manageable drop in performance. A second, more complex indirection system, utilizes a new storage unit called S-block. It is shown that the S-block architecture allows good sustained random-write performance, a point where the disk-cache architecture fails. The organization and algorithms of both architectures are specified in detail. Each was implemented and simulated as a discrete-event simulation, mimicking its operation on real storage devices. For the performance evaluation both synthetic workloads and traces from real workloads were used.
ISSN:2160-195X
2160-1968
DOI:10.1109/MSST.2010.5496971