Performance analysis of blind adaptive MIMO receivers

In this paper, we derive a theoretical performance evaluation scheme of Kalman filter based channel tracking and data decoding for multiple-input multiple-output orthogonal frequency division multiplexed (MIMO-OFDM) communication systems that are based on orthogonal space-time block codes. The deriv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Balasingam, B, Bolic, M, Shahbazpanahi, S, Kirubarajan, T
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we derive a theoretical performance evaluation scheme of Kalman filter based channel tracking and data decoding for multiple-input multiple-output orthogonal frequency division multiplexed (MIMO-OFDM) communication systems that are based on orthogonal space-time block codes. The derivation is approximate, however, it is novel and demonstrated accurate for practical scenarios. Assuming a prior distribution for the initial channel we have derived the instantaneous signal to interference and noise ratio (SINR) for consecutive transmission blocks in the absence of training by exploiting Kalman filtering to track the channel. A theoretical estimation of BER is then derived based on such instantaneous SINR values. The resulting analysis is able to study the effect of different parameters of the system such as the number of antennas, number of sub-carriers, mobile velocity and the assumed channel length on the BER performance of the system. Numerical examples confirm the validity of the theoretical analysis.
ISSN:1520-6149
2379-190X
DOI:10.1109/ICASSP.2010.5495966