Subspace Gaussian Mixture Models for speech recognition

We describe an acoustic modeling approach in which all phonetic states share a common Gaussian Mixture Model structure, and the means and mixture weights vary in a subspace of the total parameter space. We call this a Subspace Gaussian Mixture Model (SGMM). Globally shared parameters define the subs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Povey, Daniel, Burget, Lukáš, Agarwal, Mohit, Akyazi, Pinar, Kai Feng, Ghoshal, Arnab, Glembek, Ondřej, Goel, Nagendra Kumar, Karafiát, Martin, Rastrow, Ariya, Rose, Richard C, Schwarz, Petr, Thomas, Samuel
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We describe an acoustic modeling approach in which all phonetic states share a common Gaussian Mixture Model structure, and the means and mixture weights vary in a subspace of the total parameter space. We call this a Subspace Gaussian Mixture Model (SGMM). Globally shared parameters define the subspace. This style of acoustic model allows for a much more compact representation and gives better results than a conventional modeling approach, particularly with smaller amounts of training data.
ISSN:1520-6149
DOI:10.1109/ICASSP.2010.5495662