Parallel implementation of artificial neural network training
In this paper we describe the implementation of a complete ANN training procedure for speech recognition using the block mode back-propagation learning algorithm. We exploit the high performance SIMD architecture of GPU using CUDA and its C-like language interface. We also compare the speed-up obtai...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4905 |
---|---|
container_issue | |
container_start_page | 4902 |
container_title | |
container_volume | |
creator | Scanzio, Stefano Cumani, Sandro Gemello, Roberto Mana, Franco Laface, P |
description | In this paper we describe the implementation of a complete ANN training procedure for speech recognition using the block mode back-propagation learning algorithm. We exploit the high performance SIMD architecture of GPU using CUDA and its C-like language interface. We also compare the speed-up obtained implementing the training procedure only taking advantage of the multi-thread capabilities of multi-core processors. Our approach has been tested by training acoustic models for large vocabulary speech recognition tasks, showing a 6 times reduction of the time required to train real-world large size networks with respect to an already optimized implementation using the Intel MKL libraries. |
doi_str_mv | 10.1109/ICASSP.2010.5495108 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5495108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5495108</ieee_id><sourcerecordid>5495108</sourcerecordid><originalsourceid>FETCH-LOGICAL-i220t-ca81ed1ec8f30f7a02dc7ef8c72fe896569af0ab6f6165d7a184b3ea04a30f583</originalsourceid><addsrcrecordid>eNpVkMtKA0EURNsXGGO-IJv5gYm3e_q5cCHBFwQMRMFduJm5La09M6GnRfx7B83G1YGqoiiKsTmHBefgrh6XN5vNeiFgFJR0ioM9YjNnLJdCSimc1sdsIirjSu7g9eSfp9wpm3AloNRcunN2MQzvAGCNtBN2vcaEMVIsQruP1FKXMYe-K3pfYMrBhzpgLDr6TL_IX336KHLC0IXu7ZKdeYwDzQ6cspe72-flQ7l6uh83r8ogBOSyRsup4VRbX4E3CKKpDXlbG-HJOq20Qw-4015zrRqD3MpdRQgSx7yy1ZTN_3oDEW33KbSYvreHJ6ofj1RPPQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Parallel implementation of artificial neural network training</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Scanzio, Stefano ; Cumani, Sandro ; Gemello, Roberto ; Mana, Franco ; Laface, P</creator><creatorcontrib>Scanzio, Stefano ; Cumani, Sandro ; Gemello, Roberto ; Mana, Franco ; Laface, P</creatorcontrib><description>In this paper we describe the implementation of a complete ANN training procedure for speech recognition using the block mode back-propagation learning algorithm. We exploit the high performance SIMD architecture of GPU using CUDA and its C-like language interface. We also compare the speed-up obtained implementing the training procedure only taking advantage of the multi-thread capabilities of multi-core processors. Our approach has been tested by training acoustic models for large vocabulary speech recognition tasks, showing a 6 times reduction of the time required to train real-world large size networks with respect to an already optimized implementation using the Intel MKL libraries.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 9781424442959</identifier><identifier>ISBN: 1424442958</identifier><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 9781424442966</identifier><identifier>EISBN: 1424442966</identifier><identifier>DOI: 10.1109/ICASSP.2010.5495108</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acoustic testing ; Artificial Neural Network ; Artificial neural networks ; CUDA ; Fast Training ; Feedforward systems ; Focused Attention Back-Propagation ; GPU ; Hidden Markov models ; Libraries ; Matrix converters ; Multicore processing ; Speech recognition ; State estimation ; Vocabulary</subject><ispartof>2010 IEEE International Conference on Acoustics, Speech and Signal Processing, 2010, p.4902-4905</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5495108$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5495108$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Scanzio, Stefano</creatorcontrib><creatorcontrib>Cumani, Sandro</creatorcontrib><creatorcontrib>Gemello, Roberto</creatorcontrib><creatorcontrib>Mana, Franco</creatorcontrib><creatorcontrib>Laface, P</creatorcontrib><title>Parallel implementation of artificial neural network training</title><title>2010 IEEE International Conference on Acoustics, Speech and Signal Processing</title><addtitle>ICASSP</addtitle><description>In this paper we describe the implementation of a complete ANN training procedure for speech recognition using the block mode back-propagation learning algorithm. We exploit the high performance SIMD architecture of GPU using CUDA and its C-like language interface. We also compare the speed-up obtained implementing the training procedure only taking advantage of the multi-thread capabilities of multi-core processors. Our approach has been tested by training acoustic models for large vocabulary speech recognition tasks, showing a 6 times reduction of the time required to train real-world large size networks with respect to an already optimized implementation using the Intel MKL libraries.</description><subject>Acoustic testing</subject><subject>Artificial Neural Network</subject><subject>Artificial neural networks</subject><subject>CUDA</subject><subject>Fast Training</subject><subject>Feedforward systems</subject><subject>Focused Attention Back-Propagation</subject><subject>GPU</subject><subject>Hidden Markov models</subject><subject>Libraries</subject><subject>Matrix converters</subject><subject>Multicore processing</subject><subject>Speech recognition</subject><subject>State estimation</subject><subject>Vocabulary</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>9781424442959</isbn><isbn>1424442958</isbn><isbn>9781424442966</isbn><isbn>1424442966</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkMtKA0EURNsXGGO-IJv5gYm3e_q5cCHBFwQMRMFduJm5La09M6GnRfx7B83G1YGqoiiKsTmHBefgrh6XN5vNeiFgFJR0ioM9YjNnLJdCSimc1sdsIirjSu7g9eSfp9wpm3AloNRcunN2MQzvAGCNtBN2vcaEMVIsQruP1FKXMYe-K3pfYMrBhzpgLDr6TL_IX336KHLC0IXu7ZKdeYwDzQ6cspe72-flQ7l6uh83r8ogBOSyRsup4VRbX4E3CKKpDXlbG-HJOq20Qw-4015zrRqD3MpdRQgSx7yy1ZTN_3oDEW33KbSYvreHJ6ofj1RPPQ</recordid><startdate>201003</startdate><enddate>201003</enddate><creator>Scanzio, Stefano</creator><creator>Cumani, Sandro</creator><creator>Gemello, Roberto</creator><creator>Mana, Franco</creator><creator>Laface, P</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201003</creationdate><title>Parallel implementation of artificial neural network training</title><author>Scanzio, Stefano ; Cumani, Sandro ; Gemello, Roberto ; Mana, Franco ; Laface, P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i220t-ca81ed1ec8f30f7a02dc7ef8c72fe896569af0ab6f6165d7a184b3ea04a30f583</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Acoustic testing</topic><topic>Artificial Neural Network</topic><topic>Artificial neural networks</topic><topic>CUDA</topic><topic>Fast Training</topic><topic>Feedforward systems</topic><topic>Focused Attention Back-Propagation</topic><topic>GPU</topic><topic>Hidden Markov models</topic><topic>Libraries</topic><topic>Matrix converters</topic><topic>Multicore processing</topic><topic>Speech recognition</topic><topic>State estimation</topic><topic>Vocabulary</topic><toplevel>online_resources</toplevel><creatorcontrib>Scanzio, Stefano</creatorcontrib><creatorcontrib>Cumani, Sandro</creatorcontrib><creatorcontrib>Gemello, Roberto</creatorcontrib><creatorcontrib>Mana, Franco</creatorcontrib><creatorcontrib>Laface, P</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Scanzio, Stefano</au><au>Cumani, Sandro</au><au>Gemello, Roberto</au><au>Mana, Franco</au><au>Laface, P</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Parallel implementation of artificial neural network training</atitle><btitle>2010 IEEE International Conference on Acoustics, Speech and Signal Processing</btitle><stitle>ICASSP</stitle><date>2010-03</date><risdate>2010</risdate><spage>4902</spage><epage>4905</epage><pages>4902-4905</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>9781424442959</isbn><isbn>1424442958</isbn><eisbn>9781424442966</eisbn><eisbn>1424442966</eisbn><abstract>In this paper we describe the implementation of a complete ANN training procedure for speech recognition using the block mode back-propagation learning algorithm. We exploit the high performance SIMD architecture of GPU using CUDA and its C-like language interface. We also compare the speed-up obtained implementing the training procedure only taking advantage of the multi-thread capabilities of multi-core processors. Our approach has been tested by training acoustic models for large vocabulary speech recognition tasks, showing a 6 times reduction of the time required to train real-world large size networks with respect to an already optimized implementation using the Intel MKL libraries.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2010.5495108</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1520-6149 |
ispartof | 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, 2010, p.4902-4905 |
issn | 1520-6149 2379-190X |
language | eng |
recordid | cdi_ieee_primary_5495108 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Acoustic testing Artificial Neural Network Artificial neural networks CUDA Fast Training Feedforward systems Focused Attention Back-Propagation GPU Hidden Markov models Libraries Matrix converters Multicore processing Speech recognition State estimation Vocabulary |
title | Parallel implementation of artificial neural network training |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T03%3A33%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Parallel%20implementation%20of%20artificial%20neural%20network%20training&rft.btitle=2010%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing&rft.au=Scanzio,%20Stefano&rft.date=2010-03&rft.spage=4902&rft.epage=4905&rft.pages=4902-4905&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=9781424442959&rft.isbn_list=1424442958&rft_id=info:doi/10.1109/ICASSP.2010.5495108&rft_dat=%3Cieee_6IE%3E5495108%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424442966&rft.eisbn_list=1424442966&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5495108&rfr_iscdi=true |