Parallel implementation of artificial neural network training
In this paper we describe the implementation of a complete ANN training procedure for speech recognition using the block mode back-propagation learning algorithm. We exploit the high performance SIMD architecture of GPU using CUDA and its C-like language interface. We also compare the speed-up obtai...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we describe the implementation of a complete ANN training procedure for speech recognition using the block mode back-propagation learning algorithm. We exploit the high performance SIMD architecture of GPU using CUDA and its C-like language interface. We also compare the speed-up obtained implementing the training procedure only taking advantage of the multi-thread capabilities of multi-core processors. Our approach has been tested by training acoustic models for large vocabulary speech recognition tasks, showing a 6 times reduction of the time required to train real-world large size networks with respect to an already optimized implementation using the Intel MKL libraries. |
---|---|
ISSN: | 1520-6149 2379-190X |
DOI: | 10.1109/ICASSP.2010.5495108 |