Multi-class SVM optimization using MCE training with application to topic identification
This paper presents a minimum classification error (MCE) training approach for improving the accuracy of multi-class support vector machine (SVM) classifiers. We have applied this approach to topic identification (topic ID) for human-human telephone conversations from the Fisher corpus using ASR lat...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5353 |
---|---|
container_issue | |
container_start_page | 5350 |
container_title | |
container_volume | |
creator | Hazen, T J |
description | This paper presents a minimum classification error (MCE) training approach for improving the accuracy of multi-class support vector machine (SVM) classifiers. We have applied this approach to topic identification (topic ID) for human-human telephone conversations from the Fisher corpus using ASR lattice output. The new approach yields improved performance over the traditional techniques for training multi-class SVM classifiers on this task. |
doi_str_mv | 10.1109/ICASSP.2010.5494948 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5494948</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5494948</ieee_id><sourcerecordid>5494948</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-978b2583c882d381f9341350e5cdd49b43105eb3c9d067f41cfd5cee5124a9ca3</originalsourceid><addsrcrecordid>eNpVUNtKw0AQXW9grP2CvuwPpO7sJdl9lFAv0KAQlb6VzWajI2kaki2iX2-keZEZGM45w3DmELIAtgRg5uYxuy2K5yVnI6GkGUufkLlJNUgupeQmSU5JxEVqYjBsc_ZPU-acRKA4ixOQ5pJcDcMnY0ynUkdkkx-agLFr7DDQ4i2n-y7gDn9swH1LDwO27zTPVjT0Fts_8IXhg9qua9Add8J-7A4dxcq3AeuJvyYXtW0GP5_mjLzerV6yh3j9dD--s44RUhXi0WfJlRZOa14JDbUREoRiXrmqkqaUApjypXCmYklaS3B1pZz3Cri0xlkxI4vjXfTeb7sed7b_3k4hiV8DwVf6</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Multi-class SVM optimization using MCE training with application to topic identification</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hazen, T J</creator><creatorcontrib>Hazen, T J</creatorcontrib><description>This paper presents a minimum classification error (MCE) training approach for improving the accuracy of multi-class support vector machine (SVM) classifiers. We have applied this approach to topic identification (topic ID) for human-human telephone conversations from the Fisher corpus using ASR lattice output. The new approach yields improved performance over the traditional techniques for training multi-class SVM classifiers on this task.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 9781424442959</identifier><identifier>ISBN: 1424442958</identifier><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 9781424442966</identifier><identifier>EISBN: 1424442966</identifier><identifier>DOI: 10.1109/ICASSP.2010.5494948</identifier><language>eng</language><publisher>IEEE</publisher><subject>Automatic speech recognition ; Calibration ; Kernel ; Laboratories ; Lattices ; MCE training ; Natural languages ; Support vector machine classification ; Support vector machines ; SVM classifiers ; Telephony ; topic identification ; Virtual manufacturing</subject><ispartof>2010 IEEE International Conference on Acoustics, Speech and Signal Processing, 2010, p.5350-5353</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5494948$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5494948$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hazen, T J</creatorcontrib><title>Multi-class SVM optimization using MCE training with application to topic identification</title><title>2010 IEEE International Conference on Acoustics, Speech and Signal Processing</title><addtitle>ICASSP</addtitle><description>This paper presents a minimum classification error (MCE) training approach for improving the accuracy of multi-class support vector machine (SVM) classifiers. We have applied this approach to topic identification (topic ID) for human-human telephone conversations from the Fisher corpus using ASR lattice output. The new approach yields improved performance over the traditional techniques for training multi-class SVM classifiers on this task.</description><subject>Automatic speech recognition</subject><subject>Calibration</subject><subject>Kernel</subject><subject>Laboratories</subject><subject>Lattices</subject><subject>MCE training</subject><subject>Natural languages</subject><subject>Support vector machine classification</subject><subject>Support vector machines</subject><subject>SVM classifiers</subject><subject>Telephony</subject><subject>topic identification</subject><subject>Virtual manufacturing</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>9781424442959</isbn><isbn>1424442958</isbn><isbn>9781424442966</isbn><isbn>1424442966</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVUNtKw0AQXW9grP2CvuwPpO7sJdl9lFAv0KAQlb6VzWajI2kaki2iX2-keZEZGM45w3DmELIAtgRg5uYxuy2K5yVnI6GkGUufkLlJNUgupeQmSU5JxEVqYjBsc_ZPU-acRKA4ixOQ5pJcDcMnY0ynUkdkkx-agLFr7DDQ4i2n-y7gDn9swH1LDwO27zTPVjT0Fts_8IXhg9qua9Add8J-7A4dxcq3AeuJvyYXtW0GP5_mjLzerV6yh3j9dD--s44RUhXi0WfJlRZOa14JDbUREoRiXrmqkqaUApjypXCmYklaS3B1pZz3Cri0xlkxI4vjXfTeb7sed7b_3k4hiV8DwVf6</recordid><startdate>201003</startdate><enddate>201003</enddate><creator>Hazen, T J</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201003</creationdate><title>Multi-class SVM optimization using MCE training with application to topic identification</title><author>Hazen, T J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-978b2583c882d381f9341350e5cdd49b43105eb3c9d067f41cfd5cee5124a9ca3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Automatic speech recognition</topic><topic>Calibration</topic><topic>Kernel</topic><topic>Laboratories</topic><topic>Lattices</topic><topic>MCE training</topic><topic>Natural languages</topic><topic>Support vector machine classification</topic><topic>Support vector machines</topic><topic>SVM classifiers</topic><topic>Telephony</topic><topic>topic identification</topic><topic>Virtual manufacturing</topic><toplevel>online_resources</toplevel><creatorcontrib>Hazen, T J</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hazen, T J</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Multi-class SVM optimization using MCE training with application to topic identification</atitle><btitle>2010 IEEE International Conference on Acoustics, Speech and Signal Processing</btitle><stitle>ICASSP</stitle><date>2010-03</date><risdate>2010</risdate><spage>5350</spage><epage>5353</epage><pages>5350-5353</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>9781424442959</isbn><isbn>1424442958</isbn><eisbn>9781424442966</eisbn><eisbn>1424442966</eisbn><abstract>This paper presents a minimum classification error (MCE) training approach for improving the accuracy of multi-class support vector machine (SVM) classifiers. We have applied this approach to topic identification (topic ID) for human-human telephone conversations from the Fisher corpus using ASR lattice output. The new approach yields improved performance over the traditional techniques for training multi-class SVM classifiers on this task.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2010.5494948</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1520-6149 |
ispartof | 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, 2010, p.5350-5353 |
issn | 1520-6149 2379-190X |
language | eng |
recordid | cdi_ieee_primary_5494948 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Automatic speech recognition Calibration Kernel Laboratories Lattices MCE training Natural languages Support vector machine classification Support vector machines SVM classifiers Telephony topic identification Virtual manufacturing |
title | Multi-class SVM optimization using MCE training with application to topic identification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T19%3A01%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Multi-class%20SVM%20optimization%20using%20MCE%20training%20with%20application%20to%20topic%20identification&rft.btitle=2010%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing&rft.au=Hazen,%20T%20J&rft.date=2010-03&rft.spage=5350&rft.epage=5353&rft.pages=5350-5353&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=9781424442959&rft.isbn_list=1424442958&rft_id=info:doi/10.1109/ICASSP.2010.5494948&rft_dat=%3Cieee_6IE%3E5494948%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424442966&rft.eisbn_list=1424442966&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5494948&rfr_iscdi=true |