Multi-class SVM optimization using MCE training with application to topic identification

This paper presents a minimum classification error (MCE) training approach for improving the accuracy of multi-class support vector machine (SVM) classifiers. We have applied this approach to topic identification (topic ID) for human-human telephone conversations from the Fisher corpus using ASR lat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Hazen, T J
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5353
container_issue
container_start_page 5350
container_title
container_volume
creator Hazen, T J
description This paper presents a minimum classification error (MCE) training approach for improving the accuracy of multi-class support vector machine (SVM) classifiers. We have applied this approach to topic identification (topic ID) for human-human telephone conversations from the Fisher corpus using ASR lattice output. The new approach yields improved performance over the traditional techniques for training multi-class SVM classifiers on this task.
doi_str_mv 10.1109/ICASSP.2010.5494948
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5494948</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5494948</ieee_id><sourcerecordid>5494948</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-978b2583c882d381f9341350e5cdd49b43105eb3c9d067f41cfd5cee5124a9ca3</originalsourceid><addsrcrecordid>eNpVUNtKw0AQXW9grP2CvuwPpO7sJdl9lFAv0KAQlb6VzWajI2kaki2iX2-keZEZGM45w3DmELIAtgRg5uYxuy2K5yVnI6GkGUufkLlJNUgupeQmSU5JxEVqYjBsc_ZPU-acRKA4ixOQ5pJcDcMnY0ynUkdkkx-agLFr7DDQ4i2n-y7gDn9swH1LDwO27zTPVjT0Fts_8IXhg9qua9Add8J-7A4dxcq3AeuJvyYXtW0GP5_mjLzerV6yh3j9dD--s44RUhXi0WfJlRZOa14JDbUREoRiXrmqkqaUApjypXCmYklaS3B1pZz3Cri0xlkxI4vjXfTeb7sed7b_3k4hiV8DwVf6</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Multi-class SVM optimization using MCE training with application to topic identification</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hazen, T J</creator><creatorcontrib>Hazen, T J</creatorcontrib><description>This paper presents a minimum classification error (MCE) training approach for improving the accuracy of multi-class support vector machine (SVM) classifiers. We have applied this approach to topic identification (topic ID) for human-human telephone conversations from the Fisher corpus using ASR lattice output. The new approach yields improved performance over the traditional techniques for training multi-class SVM classifiers on this task.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 9781424442959</identifier><identifier>ISBN: 1424442958</identifier><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 9781424442966</identifier><identifier>EISBN: 1424442966</identifier><identifier>DOI: 10.1109/ICASSP.2010.5494948</identifier><language>eng</language><publisher>IEEE</publisher><subject>Automatic speech recognition ; Calibration ; Kernel ; Laboratories ; Lattices ; MCE training ; Natural languages ; Support vector machine classification ; Support vector machines ; SVM classifiers ; Telephony ; topic identification ; Virtual manufacturing</subject><ispartof>2010 IEEE International Conference on Acoustics, Speech and Signal Processing, 2010, p.5350-5353</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5494948$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5494948$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hazen, T J</creatorcontrib><title>Multi-class SVM optimization using MCE training with application to topic identification</title><title>2010 IEEE International Conference on Acoustics, Speech and Signal Processing</title><addtitle>ICASSP</addtitle><description>This paper presents a minimum classification error (MCE) training approach for improving the accuracy of multi-class support vector machine (SVM) classifiers. We have applied this approach to topic identification (topic ID) for human-human telephone conversations from the Fisher corpus using ASR lattice output. The new approach yields improved performance over the traditional techniques for training multi-class SVM classifiers on this task.</description><subject>Automatic speech recognition</subject><subject>Calibration</subject><subject>Kernel</subject><subject>Laboratories</subject><subject>Lattices</subject><subject>MCE training</subject><subject>Natural languages</subject><subject>Support vector machine classification</subject><subject>Support vector machines</subject><subject>SVM classifiers</subject><subject>Telephony</subject><subject>topic identification</subject><subject>Virtual manufacturing</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>9781424442959</isbn><isbn>1424442958</isbn><isbn>9781424442966</isbn><isbn>1424442966</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVUNtKw0AQXW9grP2CvuwPpO7sJdl9lFAv0KAQlb6VzWajI2kaki2iX2-keZEZGM45w3DmELIAtgRg5uYxuy2K5yVnI6GkGUufkLlJNUgupeQmSU5JxEVqYjBsc_ZPU-acRKA4ixOQ5pJcDcMnY0ynUkdkkx-agLFr7DDQ4i2n-y7gDn9swH1LDwO27zTPVjT0Fts_8IXhg9qua9Add8J-7A4dxcq3AeuJvyYXtW0GP5_mjLzerV6yh3j9dD--s44RUhXi0WfJlRZOa14JDbUREoRiXrmqkqaUApjypXCmYklaS3B1pZz3Cri0xlkxI4vjXfTeb7sed7b_3k4hiV8DwVf6</recordid><startdate>201003</startdate><enddate>201003</enddate><creator>Hazen, T J</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201003</creationdate><title>Multi-class SVM optimization using MCE training with application to topic identification</title><author>Hazen, T J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-978b2583c882d381f9341350e5cdd49b43105eb3c9d067f41cfd5cee5124a9ca3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Automatic speech recognition</topic><topic>Calibration</topic><topic>Kernel</topic><topic>Laboratories</topic><topic>Lattices</topic><topic>MCE training</topic><topic>Natural languages</topic><topic>Support vector machine classification</topic><topic>Support vector machines</topic><topic>SVM classifiers</topic><topic>Telephony</topic><topic>topic identification</topic><topic>Virtual manufacturing</topic><toplevel>online_resources</toplevel><creatorcontrib>Hazen, T J</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hazen, T J</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Multi-class SVM optimization using MCE training with application to topic identification</atitle><btitle>2010 IEEE International Conference on Acoustics, Speech and Signal Processing</btitle><stitle>ICASSP</stitle><date>2010-03</date><risdate>2010</risdate><spage>5350</spage><epage>5353</epage><pages>5350-5353</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>9781424442959</isbn><isbn>1424442958</isbn><eisbn>9781424442966</eisbn><eisbn>1424442966</eisbn><abstract>This paper presents a minimum classification error (MCE) training approach for improving the accuracy of multi-class support vector machine (SVM) classifiers. We have applied this approach to topic identification (topic ID) for human-human telephone conversations from the Fisher corpus using ASR lattice output. The new approach yields improved performance over the traditional techniques for training multi-class SVM classifiers on this task.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2010.5494948</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-6149
ispartof 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, 2010, p.5350-5353
issn 1520-6149
2379-190X
language eng
recordid cdi_ieee_primary_5494948
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Automatic speech recognition
Calibration
Kernel
Laboratories
Lattices
MCE training
Natural languages
Support vector machine classification
Support vector machines
SVM classifiers
Telephony
topic identification
Virtual manufacturing
title Multi-class SVM optimization using MCE training with application to topic identification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T19%3A01%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Multi-class%20SVM%20optimization%20using%20MCE%20training%20with%20application%20to%20topic%20identification&rft.btitle=2010%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing&rft.au=Hazen,%20T%20J&rft.date=2010-03&rft.spage=5350&rft.epage=5353&rft.pages=5350-5353&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=9781424442959&rft.isbn_list=1424442958&rft_id=info:doi/10.1109/ICASSP.2010.5494948&rft_dat=%3Cieee_6IE%3E5494948%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424442966&rft.eisbn_list=1424442966&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5494948&rfr_iscdi=true