Multi-class SVM optimization using MCE training with application to topic identification

This paper presents a minimum classification error (MCE) training approach for improving the accuracy of multi-class support vector machine (SVM) classifiers. We have applied this approach to topic identification (topic ID) for human-human telephone conversations from the Fisher corpus using ASR lat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Hazen, T J
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a minimum classification error (MCE) training approach for improving the accuracy of multi-class support vector machine (SVM) classifiers. We have applied this approach to topic identification (topic ID) for human-human telephone conversations from the Fisher corpus using ASR lattice output. The new approach yields improved performance over the traditional techniques for training multi-class SVM classifiers on this task.
ISSN:1520-6149
2379-190X
DOI:10.1109/ICASSP.2010.5494948