A Case Study on Lightning Protection, Current Injection Measurements, and Model
A newly built pharmaceutical plant has been investigated by measurements. Currents of 0.3 kA were injected in the lightning protection grid on the roof. Inside the building, test cables of 100 m length followed a path typical for cables belonging to the installation. We measured induced cable curren...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electromagnetic compatibility 2010-08, Vol.52 (3), p.684-690 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 690 |
---|---|
container_issue | 3 |
container_start_page | 684 |
container_title | IEEE transactions on electromagnetic compatibility |
container_volume | 52 |
creator | Bargboer, Geesje van Deursen, Alexander P. J. |
description | A newly built pharmaceutical plant has been investigated by measurements. Currents of 0.3 kA were injected in the lightning protection grid on the roof. Inside the building, test cables of 100 m length followed a path typical for cables belonging to the installation. We measured induced cable currents and voltages. A reduced model of the building incorporated most of the designed current paths. Measurements and model showed that the roof steel skeleton carried about 80% of the current and the intended lightning conductors 20%. The calculated current through a cable support was larger than measured. This is explained by also considering a nearby nonintended conductor. For three types of cables, we determined the transfer impedances. The measurements and model have been combined and extrapolated to actual lightning. |
doi_str_mv | 10.1109/TEMC.2010.2050486 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_5484654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5484654</ieee_id><sourcerecordid>2721431631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-3df295a94cc3d1055c84f5151bbf32c0b6c275b9ce3b98c1cfe3c4d72323f5c63</originalsourceid><addsrcrecordid>eNo9kF9LwzAUxYMoOKcfQHwJiG_rzP82j6NMHWxMcIJvJU2T2bGlM2kf9u3NaNnT5Z7zu-fCAeARoynGSL5u5qt8SlBcCeKIZeIKjDDnWYKz9OcajBDCWSJpym_BXQi7uDJO6AisZzBXwcCvtqtOsHFwWW9_W1e7Lfz0TWt0WzduAvPOe-NauHC7XoIro0LnzSGqYQKVq-Cqqcz-HtxYtQ_mYZhj8P023-QfyXL9vshny0RTIdqEVpZIriTTmlYYca4zZjnmuCwtJRqVQpOUl1IbWspMY20N1axKCSXUci3oGDz3uUff_HUmtMWu6byLLwuMSCopEYhECveU9k0I3tji6OuD8qcIFefeinNvxbm3Yugt3rwMySpotbdeOV2HyyGhmAkuZOSeeq42xlxszrJoM_oPji11Wg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1027932602</pqid></control><display><type>article</type><title>A Case Study on Lightning Protection, Current Injection Measurements, and Model</title><source>IEEE Electronic Library (IEL)</source><creator>Bargboer, Geesje ; van Deursen, Alexander P. J.</creator><creatorcontrib>Bargboer, Geesje ; van Deursen, Alexander P. J.</creatorcontrib><description>A newly built pharmaceutical plant has been investigated by measurements. Currents of 0.3 kA were injected in the lightning protection grid on the roof. Inside the building, test cables of 100 m length followed a path typical for cables belonging to the installation. We measured induced cable currents and voltages. A reduced model of the building incorporated most of the designed current paths. Measurements and model showed that the roof steel skeleton carried about 80% of the current and the intended lightning conductors 20%. The calculated current through a cable support was larger than measured. This is explained by also considering a nearby nonintended conductor. For three types of cables, we determined the transfer impedances. The measurements and model have been combined and extrapolated to actual lightning.</description><identifier>ISSN: 0018-9375</identifier><identifier>EISSN: 1558-187X</identifier><identifier>DOI: 10.1109/TEMC.2010.2050486</identifier><identifier>CODEN: IEMCAE</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Arcs, sparks, lightning ; Buildings ; Conductors ; Connection and protection apparatus ; Current injection ; Current measurement ; Electric discharges ; Electrical engineering. Electrical power engineering ; Exact sciences and technology ; experimental methods ; Lead ; Lightning ; lightning protection (LP) ; Physics ; Physics of gases, plasmas and electric discharges ; Physics of plasmas and electric discharges ; Skeleton ; Steel ; verification</subject><ispartof>IEEE transactions on electromagnetic compatibility, 2010-08, Vol.52 (3), p.684-690</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-3df295a94cc3d1055c84f5151bbf32c0b6c275b9ce3b98c1cfe3c4d72323f5c63</citedby><cites>FETCH-LOGICAL-c366t-3df295a94cc3d1055c84f5151bbf32c0b6c275b9ce3b98c1cfe3c4d72323f5c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5484654$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5484654$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23146569$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bargboer, Geesje</creatorcontrib><creatorcontrib>van Deursen, Alexander P. J.</creatorcontrib><title>A Case Study on Lightning Protection, Current Injection Measurements, and Model</title><title>IEEE transactions on electromagnetic compatibility</title><addtitle>TEMC</addtitle><description>A newly built pharmaceutical plant has been investigated by measurements. Currents of 0.3 kA were injected in the lightning protection grid on the roof. Inside the building, test cables of 100 m length followed a path typical for cables belonging to the installation. We measured induced cable currents and voltages. A reduced model of the building incorporated most of the designed current paths. Measurements and model showed that the roof steel skeleton carried about 80% of the current and the intended lightning conductors 20%. The calculated current through a cable support was larger than measured. This is explained by also considering a nearby nonintended conductor. For three types of cables, we determined the transfer impedances. The measurements and model have been combined and extrapolated to actual lightning.</description><subject>Applied sciences</subject><subject>Arcs, sparks, lightning</subject><subject>Buildings</subject><subject>Conductors</subject><subject>Connection and protection apparatus</subject><subject>Current injection</subject><subject>Current measurement</subject><subject>Electric discharges</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Exact sciences and technology</subject><subject>experimental methods</subject><subject>Lead</subject><subject>Lightning</subject><subject>lightning protection (LP)</subject><subject>Physics</subject><subject>Physics of gases, plasmas and electric discharges</subject><subject>Physics of plasmas and electric discharges</subject><subject>Skeleton</subject><subject>Steel</subject><subject>verification</subject><issn>0018-9375</issn><issn>1558-187X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF9LwzAUxYMoOKcfQHwJiG_rzP82j6NMHWxMcIJvJU2T2bGlM2kf9u3NaNnT5Z7zu-fCAeARoynGSL5u5qt8SlBcCeKIZeIKjDDnWYKz9OcajBDCWSJpym_BXQi7uDJO6AisZzBXwcCvtqtOsHFwWW9_W1e7Lfz0TWt0WzduAvPOe-NauHC7XoIro0LnzSGqYQKVq-Cqqcz-HtxYtQ_mYZhj8P023-QfyXL9vshny0RTIdqEVpZIriTTmlYYca4zZjnmuCwtJRqVQpOUl1IbWspMY20N1axKCSXUci3oGDz3uUff_HUmtMWu6byLLwuMSCopEYhECveU9k0I3tji6OuD8qcIFefeinNvxbm3Yugt3rwMySpotbdeOV2HyyGhmAkuZOSeeq42xlxszrJoM_oPji11Wg</recordid><startdate>20100801</startdate><enddate>20100801</enddate><creator>Bargboer, Geesje</creator><creator>van Deursen, Alexander P. J.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20100801</creationdate><title>A Case Study on Lightning Protection, Current Injection Measurements, and Model</title><author>Bargboer, Geesje ; van Deursen, Alexander P. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-3df295a94cc3d1055c84f5151bbf32c0b6c275b9ce3b98c1cfe3c4d72323f5c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Arcs, sparks, lightning</topic><topic>Buildings</topic><topic>Conductors</topic><topic>Connection and protection apparatus</topic><topic>Current injection</topic><topic>Current measurement</topic><topic>Electric discharges</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Exact sciences and technology</topic><topic>experimental methods</topic><topic>Lead</topic><topic>Lightning</topic><topic>lightning protection (LP)</topic><topic>Physics</topic><topic>Physics of gases, plasmas and electric discharges</topic><topic>Physics of plasmas and electric discharges</topic><topic>Skeleton</topic><topic>Steel</topic><topic>verification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bargboer, Geesje</creatorcontrib><creatorcontrib>van Deursen, Alexander P. J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electromagnetic compatibility</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bargboer, Geesje</au><au>van Deursen, Alexander P. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Case Study on Lightning Protection, Current Injection Measurements, and Model</atitle><jtitle>IEEE transactions on electromagnetic compatibility</jtitle><stitle>TEMC</stitle><date>2010-08-01</date><risdate>2010</risdate><volume>52</volume><issue>3</issue><spage>684</spage><epage>690</epage><pages>684-690</pages><issn>0018-9375</issn><eissn>1558-187X</eissn><coden>IEMCAE</coden><abstract>A newly built pharmaceutical plant has been investigated by measurements. Currents of 0.3 kA were injected in the lightning protection grid on the roof. Inside the building, test cables of 100 m length followed a path typical for cables belonging to the installation. We measured induced cable currents and voltages. A reduced model of the building incorporated most of the designed current paths. Measurements and model showed that the roof steel skeleton carried about 80% of the current and the intended lightning conductors 20%. The calculated current through a cable support was larger than measured. This is explained by also considering a nearby nonintended conductor. For three types of cables, we determined the transfer impedances. The measurements and model have been combined and extrapolated to actual lightning.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TEMC.2010.2050486</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9375 |
ispartof | IEEE transactions on electromagnetic compatibility, 2010-08, Vol.52 (3), p.684-690 |
issn | 0018-9375 1558-187X |
language | eng |
recordid | cdi_ieee_primary_5484654 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Arcs, sparks, lightning Buildings Conductors Connection and protection apparatus Current injection Current measurement Electric discharges Electrical engineering. Electrical power engineering Exact sciences and technology experimental methods Lead Lightning lightning protection (LP) Physics Physics of gases, plasmas and electric discharges Physics of plasmas and electric discharges Skeleton Steel verification |
title | A Case Study on Lightning Protection, Current Injection Measurements, and Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T09%3A37%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Case%20Study%20on%20Lightning%20Protection,%20Current%20Injection%20Measurements,%20and%20Model&rft.jtitle=IEEE%20transactions%20on%20electromagnetic%20compatibility&rft.au=Bargboer,%20Geesje&rft.date=2010-08-01&rft.volume=52&rft.issue=3&rft.spage=684&rft.epage=690&rft.pages=684-690&rft.issn=0018-9375&rft.eissn=1558-187X&rft.coden=IEMCAE&rft_id=info:doi/10.1109/TEMC.2010.2050486&rft_dat=%3Cproquest_RIE%3E2721431631%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1027932602&rft_id=info:pmid/&rft_ieee_id=5484654&rfr_iscdi=true |