A Case Study on Lightning Protection, Current Injection Measurements, and Model

A newly built pharmaceutical plant has been investigated by measurements. Currents of 0.3 kA were injected in the lightning protection grid on the roof. Inside the building, test cables of 100 m length followed a path typical for cables belonging to the installation. We measured induced cable curren...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electromagnetic compatibility 2010-08, Vol.52 (3), p.684-690
Hauptverfasser: Bargboer, Geesje, van Deursen, Alexander P. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 690
container_issue 3
container_start_page 684
container_title IEEE transactions on electromagnetic compatibility
container_volume 52
creator Bargboer, Geesje
van Deursen, Alexander P. J.
description A newly built pharmaceutical plant has been investigated by measurements. Currents of 0.3 kA were injected in the lightning protection grid on the roof. Inside the building, test cables of 100 m length followed a path typical for cables belonging to the installation. We measured induced cable currents and voltages. A reduced model of the building incorporated most of the designed current paths. Measurements and model showed that the roof steel skeleton carried about 80% of the current and the intended lightning conductors 20%. The calculated current through a cable support was larger than measured. This is explained by also considering a nearby nonintended conductor. For three types of cables, we determined the transfer impedances. The measurements and model have been combined and extrapolated to actual lightning.
doi_str_mv 10.1109/TEMC.2010.2050486
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_5484654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5484654</ieee_id><sourcerecordid>2721431631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-3df295a94cc3d1055c84f5151bbf32c0b6c275b9ce3b98c1cfe3c4d72323f5c63</originalsourceid><addsrcrecordid>eNo9kF9LwzAUxYMoOKcfQHwJiG_rzP82j6NMHWxMcIJvJU2T2bGlM2kf9u3NaNnT5Z7zu-fCAeARoynGSL5u5qt8SlBcCeKIZeIKjDDnWYKz9OcajBDCWSJpym_BXQi7uDJO6AisZzBXwcCvtqtOsHFwWW9_W1e7Lfz0TWt0WzduAvPOe-NauHC7XoIro0LnzSGqYQKVq-Cqqcz-HtxYtQ_mYZhj8P023-QfyXL9vshny0RTIdqEVpZIriTTmlYYca4zZjnmuCwtJRqVQpOUl1IbWspMY20N1axKCSXUci3oGDz3uUff_HUmtMWu6byLLwuMSCopEYhECveU9k0I3tji6OuD8qcIFefeinNvxbm3Yugt3rwMySpotbdeOV2HyyGhmAkuZOSeeq42xlxszrJoM_oPji11Wg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1027932602</pqid></control><display><type>article</type><title>A Case Study on Lightning Protection, Current Injection Measurements, and Model</title><source>IEEE Electronic Library (IEL)</source><creator>Bargboer, Geesje ; van Deursen, Alexander P. J.</creator><creatorcontrib>Bargboer, Geesje ; van Deursen, Alexander P. J.</creatorcontrib><description>A newly built pharmaceutical plant has been investigated by measurements. Currents of 0.3 kA were injected in the lightning protection grid on the roof. Inside the building, test cables of 100 m length followed a path typical for cables belonging to the installation. We measured induced cable currents and voltages. A reduced model of the building incorporated most of the designed current paths. Measurements and model showed that the roof steel skeleton carried about 80% of the current and the intended lightning conductors 20%. The calculated current through a cable support was larger than measured. This is explained by also considering a nearby nonintended conductor. For three types of cables, we determined the transfer impedances. The measurements and model have been combined and extrapolated to actual lightning.</description><identifier>ISSN: 0018-9375</identifier><identifier>EISSN: 1558-187X</identifier><identifier>DOI: 10.1109/TEMC.2010.2050486</identifier><identifier>CODEN: IEMCAE</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Arcs, sparks, lightning ; Buildings ; Conductors ; Connection and protection apparatus ; Current injection ; Current measurement ; Electric discharges ; Electrical engineering. Electrical power engineering ; Exact sciences and technology ; experimental methods ; Lead ; Lightning ; lightning protection (LP) ; Physics ; Physics of gases, plasmas and electric discharges ; Physics of plasmas and electric discharges ; Skeleton ; Steel ; verification</subject><ispartof>IEEE transactions on electromagnetic compatibility, 2010-08, Vol.52 (3), p.684-690</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-3df295a94cc3d1055c84f5151bbf32c0b6c275b9ce3b98c1cfe3c4d72323f5c63</citedby><cites>FETCH-LOGICAL-c366t-3df295a94cc3d1055c84f5151bbf32c0b6c275b9ce3b98c1cfe3c4d72323f5c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5484654$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5484654$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23146569$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bargboer, Geesje</creatorcontrib><creatorcontrib>van Deursen, Alexander P. J.</creatorcontrib><title>A Case Study on Lightning Protection, Current Injection Measurements, and Model</title><title>IEEE transactions on electromagnetic compatibility</title><addtitle>TEMC</addtitle><description>A newly built pharmaceutical plant has been investigated by measurements. Currents of 0.3 kA were injected in the lightning protection grid on the roof. Inside the building, test cables of 100 m length followed a path typical for cables belonging to the installation. We measured induced cable currents and voltages. A reduced model of the building incorporated most of the designed current paths. Measurements and model showed that the roof steel skeleton carried about 80% of the current and the intended lightning conductors 20%. The calculated current through a cable support was larger than measured. This is explained by also considering a nearby nonintended conductor. For three types of cables, we determined the transfer impedances. The measurements and model have been combined and extrapolated to actual lightning.</description><subject>Applied sciences</subject><subject>Arcs, sparks, lightning</subject><subject>Buildings</subject><subject>Conductors</subject><subject>Connection and protection apparatus</subject><subject>Current injection</subject><subject>Current measurement</subject><subject>Electric discharges</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Exact sciences and technology</subject><subject>experimental methods</subject><subject>Lead</subject><subject>Lightning</subject><subject>lightning protection (LP)</subject><subject>Physics</subject><subject>Physics of gases, plasmas and electric discharges</subject><subject>Physics of plasmas and electric discharges</subject><subject>Skeleton</subject><subject>Steel</subject><subject>verification</subject><issn>0018-9375</issn><issn>1558-187X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF9LwzAUxYMoOKcfQHwJiG_rzP82j6NMHWxMcIJvJU2T2bGlM2kf9u3NaNnT5Z7zu-fCAeARoynGSL5u5qt8SlBcCeKIZeIKjDDnWYKz9OcajBDCWSJpym_BXQi7uDJO6AisZzBXwcCvtqtOsHFwWW9_W1e7Lfz0TWt0WzduAvPOe-NauHC7XoIro0LnzSGqYQKVq-Cqqcz-HtxYtQ_mYZhj8P023-QfyXL9vshny0RTIdqEVpZIriTTmlYYca4zZjnmuCwtJRqVQpOUl1IbWspMY20N1axKCSXUci3oGDz3uUff_HUmtMWu6byLLwuMSCopEYhECveU9k0I3tji6OuD8qcIFefeinNvxbm3Yugt3rwMySpotbdeOV2HyyGhmAkuZOSeeq42xlxszrJoM_oPji11Wg</recordid><startdate>20100801</startdate><enddate>20100801</enddate><creator>Bargboer, Geesje</creator><creator>van Deursen, Alexander P. J.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20100801</creationdate><title>A Case Study on Lightning Protection, Current Injection Measurements, and Model</title><author>Bargboer, Geesje ; van Deursen, Alexander P. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-3df295a94cc3d1055c84f5151bbf32c0b6c275b9ce3b98c1cfe3c4d72323f5c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Arcs, sparks, lightning</topic><topic>Buildings</topic><topic>Conductors</topic><topic>Connection and protection apparatus</topic><topic>Current injection</topic><topic>Current measurement</topic><topic>Electric discharges</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Exact sciences and technology</topic><topic>experimental methods</topic><topic>Lead</topic><topic>Lightning</topic><topic>lightning protection (LP)</topic><topic>Physics</topic><topic>Physics of gases, plasmas and electric discharges</topic><topic>Physics of plasmas and electric discharges</topic><topic>Skeleton</topic><topic>Steel</topic><topic>verification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bargboer, Geesje</creatorcontrib><creatorcontrib>van Deursen, Alexander P. J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electromagnetic compatibility</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bargboer, Geesje</au><au>van Deursen, Alexander P. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Case Study on Lightning Protection, Current Injection Measurements, and Model</atitle><jtitle>IEEE transactions on electromagnetic compatibility</jtitle><stitle>TEMC</stitle><date>2010-08-01</date><risdate>2010</risdate><volume>52</volume><issue>3</issue><spage>684</spage><epage>690</epage><pages>684-690</pages><issn>0018-9375</issn><eissn>1558-187X</eissn><coden>IEMCAE</coden><abstract>A newly built pharmaceutical plant has been investigated by measurements. Currents of 0.3 kA were injected in the lightning protection grid on the roof. Inside the building, test cables of 100 m length followed a path typical for cables belonging to the installation. We measured induced cable currents and voltages. A reduced model of the building incorporated most of the designed current paths. Measurements and model showed that the roof steel skeleton carried about 80% of the current and the intended lightning conductors 20%. The calculated current through a cable support was larger than measured. This is explained by also considering a nearby nonintended conductor. For three types of cables, we determined the transfer impedances. The measurements and model have been combined and extrapolated to actual lightning.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TEMC.2010.2050486</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9375
ispartof IEEE transactions on electromagnetic compatibility, 2010-08, Vol.52 (3), p.684-690
issn 0018-9375
1558-187X
language eng
recordid cdi_ieee_primary_5484654
source IEEE Electronic Library (IEL)
subjects Applied sciences
Arcs, sparks, lightning
Buildings
Conductors
Connection and protection apparatus
Current injection
Current measurement
Electric discharges
Electrical engineering. Electrical power engineering
Exact sciences and technology
experimental methods
Lead
Lightning
lightning protection (LP)
Physics
Physics of gases, plasmas and electric discharges
Physics of plasmas and electric discharges
Skeleton
Steel
verification
title A Case Study on Lightning Protection, Current Injection Measurements, and Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T09%3A37%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Case%20Study%20on%20Lightning%20Protection,%20Current%20Injection%20Measurements,%20and%20Model&rft.jtitle=IEEE%20transactions%20on%20electromagnetic%20compatibility&rft.au=Bargboer,%20Geesje&rft.date=2010-08-01&rft.volume=52&rft.issue=3&rft.spage=684&rft.epage=690&rft.pages=684-690&rft.issn=0018-9375&rft.eissn=1558-187X&rft.coden=IEMCAE&rft_id=info:doi/10.1109/TEMC.2010.2050486&rft_dat=%3Cproquest_RIE%3E2721431631%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1027932602&rft_id=info:pmid/&rft_ieee_id=5484654&rfr_iscdi=true