Convergence analysis of genetic algorithms for topology control in MANETs

We describe and verify convergence properties of our forced-based genetic algorithm (FGA) as a decentralized topology control mechanism distributed among software agents. FGA uses local information to guide autonomous mobile nodes over an unknown geographical terrain to obtain a uniform node distrib...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sahin, Cem Safak, Gundry, Stephen, Urrea, Elkin, Uyar, M Umit, Conner, Michael, Bertoli, Giorgio, Pizzo, Christian
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue
container_start_page 1
container_title
container_volume
creator Sahin, Cem Safak
Gundry, Stephen
Urrea, Elkin
Uyar, M Umit
Conner, Michael
Bertoli, Giorgio
Pizzo, Christian
description We describe and verify convergence properties of our forced-based genetic algorithm (FGA) as a decentralized topology control mechanism distributed among software agents. FGA uses local information to guide autonomous mobile nodes over an unknown geographical terrain to obtain a uniform node distribution. Analyzing the convergence characteristics of FGA is difficult due to the stochastic nature of GA-based algorithms. Ergodic homogeneous Markov chains are used to describe the convergence characteristics of our FGA. In addition, simulation experiments verify the convergence of our GA-based algorithm.
doi_str_mv 10.1109/SARNOF.2010.5469783
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5469783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5469783</ieee_id><sourcerecordid>5469783</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-709648a32328a59b943029e4f9a09cd061065bdcbc94fc743aaf85881475b1ef3</originalsourceid><addsrcrecordid>eNpFkM9qAjEYxFOK0Gp9Ai95AW3-fNnNd1xEW8EqtHuXbExsyrqRZCn49l2o4FyG-R2GYQiZcbbgnOHrV_W5268Xgg1AQYGllg9kzEEAKIUAj_cg9IiMBWOInBWon8g05x82CJRQsnwmm2Xsfl06uc46ajrTXnPINHo6ENcHS017iin03-dMfUy0j5fYxtOV2tj1KbY0dPSj2q3q_EJG3rTZTW8-IfV6VS_f59v922ZZbecBWT8vGRagjRRSaKOwQZBMoAOPhqE9smLYqZqjbSyCtyVIY7xWWnMoVcOdlxMy-68NzrnDJYWzSdfD7Qb5B_AkTyk</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Convergence analysis of genetic algorithms for topology control in MANETs</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sahin, Cem Safak ; Gundry, Stephen ; Urrea, Elkin ; Uyar, M Umit ; Conner, Michael ; Bertoli, Giorgio ; Pizzo, Christian</creator><creatorcontrib>Sahin, Cem Safak ; Gundry, Stephen ; Urrea, Elkin ; Uyar, M Umit ; Conner, Michael ; Bertoli, Giorgio ; Pizzo, Christian</creatorcontrib><description>We describe and verify convergence properties of our forced-based genetic algorithm (FGA) as a decentralized topology control mechanism distributed among software agents. FGA uses local information to guide autonomous mobile nodes over an unknown geographical terrain to obtain a uniform node distribution. Analyzing the convergence characteristics of FGA is difficult due to the stochastic nature of GA-based algorithms. Ergodic homogeneous Markov chains are used to describe the convergence characteristics of our FGA. In addition, simulation experiments verify the convergence of our GA-based algorithm.</description><identifier>ISBN: 1424455928</identifier><identifier>ISBN: 9781424455928</identifier><identifier>EISBN: 1424455944</identifier><identifier>EISBN: 9781424455942</identifier><identifier>EISBN: 1424455936</identifier><identifier>EISBN: 9781424455935</identifier><identifier>DOI: 10.1109/SARNOF.2010.5469783</identifier><identifier>LCCN: 2009910698</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; bio-inspired algorithms ; Convergence ; Genetic algorithms ; Machine learning algorithms ; MANETs ; Markov chains ; Mobile ad hoc networks ; Mobile communication ; Routing ; Software agents ; Stochastic processes ; Topology ; topology control</subject><ispartof>2010 IEEE Sarnoff Symposium, 2010, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5469783$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5469783$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sahin, Cem Safak</creatorcontrib><creatorcontrib>Gundry, Stephen</creatorcontrib><creatorcontrib>Urrea, Elkin</creatorcontrib><creatorcontrib>Uyar, M Umit</creatorcontrib><creatorcontrib>Conner, Michael</creatorcontrib><creatorcontrib>Bertoli, Giorgio</creatorcontrib><creatorcontrib>Pizzo, Christian</creatorcontrib><title>Convergence analysis of genetic algorithms for topology control in MANETs</title><title>2010 IEEE Sarnoff Symposium</title><addtitle>SARNOF</addtitle><description>We describe and verify convergence properties of our forced-based genetic algorithm (FGA) as a decentralized topology control mechanism distributed among software agents. FGA uses local information to guide autonomous mobile nodes over an unknown geographical terrain to obtain a uniform node distribution. Analyzing the convergence characteristics of FGA is difficult due to the stochastic nature of GA-based algorithms. Ergodic homogeneous Markov chains are used to describe the convergence characteristics of our FGA. In addition, simulation experiments verify the convergence of our GA-based algorithm.</description><subject>Algorithm design and analysis</subject><subject>bio-inspired algorithms</subject><subject>Convergence</subject><subject>Genetic algorithms</subject><subject>Machine learning algorithms</subject><subject>MANETs</subject><subject>Markov chains</subject><subject>Mobile ad hoc networks</subject><subject>Mobile communication</subject><subject>Routing</subject><subject>Software agents</subject><subject>Stochastic processes</subject><subject>Topology</subject><subject>topology control</subject><isbn>1424455928</isbn><isbn>9781424455928</isbn><isbn>1424455944</isbn><isbn>9781424455942</isbn><isbn>1424455936</isbn><isbn>9781424455935</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkM9qAjEYxFOK0Gp9Ai95AW3-fNnNd1xEW8EqtHuXbExsyrqRZCn49l2o4FyG-R2GYQiZcbbgnOHrV_W5268Xgg1AQYGllg9kzEEAKIUAj_cg9IiMBWOInBWon8g05x82CJRQsnwmm2Xsfl06uc46ajrTXnPINHo6ENcHS017iin03-dMfUy0j5fYxtOV2tj1KbY0dPSj2q3q_EJG3rTZTW8-IfV6VS_f59v922ZZbecBWT8vGRagjRRSaKOwQZBMoAOPhqE9smLYqZqjbSyCtyVIY7xWWnMoVcOdlxMy-68NzrnDJYWzSdfD7Qb5B_AkTyk</recordid><startdate>201004</startdate><enddate>201004</enddate><creator>Sahin, Cem Safak</creator><creator>Gundry, Stephen</creator><creator>Urrea, Elkin</creator><creator>Uyar, M Umit</creator><creator>Conner, Michael</creator><creator>Bertoli, Giorgio</creator><creator>Pizzo, Christian</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201004</creationdate><title>Convergence analysis of genetic algorithms for topology control in MANETs</title><author>Sahin, Cem Safak ; Gundry, Stephen ; Urrea, Elkin ; Uyar, M Umit ; Conner, Michael ; Bertoli, Giorgio ; Pizzo, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-709648a32328a59b943029e4f9a09cd061065bdcbc94fc743aaf85881475b1ef3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithm design and analysis</topic><topic>bio-inspired algorithms</topic><topic>Convergence</topic><topic>Genetic algorithms</topic><topic>Machine learning algorithms</topic><topic>MANETs</topic><topic>Markov chains</topic><topic>Mobile ad hoc networks</topic><topic>Mobile communication</topic><topic>Routing</topic><topic>Software agents</topic><topic>Stochastic processes</topic><topic>Topology</topic><topic>topology control</topic><toplevel>online_resources</toplevel><creatorcontrib>Sahin, Cem Safak</creatorcontrib><creatorcontrib>Gundry, Stephen</creatorcontrib><creatorcontrib>Urrea, Elkin</creatorcontrib><creatorcontrib>Uyar, M Umit</creatorcontrib><creatorcontrib>Conner, Michael</creatorcontrib><creatorcontrib>Bertoli, Giorgio</creatorcontrib><creatorcontrib>Pizzo, Christian</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sahin, Cem Safak</au><au>Gundry, Stephen</au><au>Urrea, Elkin</au><au>Uyar, M Umit</au><au>Conner, Michael</au><au>Bertoli, Giorgio</au><au>Pizzo, Christian</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Convergence analysis of genetic algorithms for topology control in MANETs</atitle><btitle>2010 IEEE Sarnoff Symposium</btitle><stitle>SARNOF</stitle><date>2010-04</date><risdate>2010</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><isbn>1424455928</isbn><isbn>9781424455928</isbn><eisbn>1424455944</eisbn><eisbn>9781424455942</eisbn><eisbn>1424455936</eisbn><eisbn>9781424455935</eisbn><abstract>We describe and verify convergence properties of our forced-based genetic algorithm (FGA) as a decentralized topology control mechanism distributed among software agents. FGA uses local information to guide autonomous mobile nodes over an unknown geographical terrain to obtain a uniform node distribution. Analyzing the convergence characteristics of FGA is difficult due to the stochastic nature of GA-based algorithms. Ergodic homogeneous Markov chains are used to describe the convergence characteristics of our FGA. In addition, simulation experiments verify the convergence of our GA-based algorithm.</abstract><pub>IEEE</pub><doi>10.1109/SARNOF.2010.5469783</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424455928
ispartof 2010 IEEE Sarnoff Symposium, 2010, p.1-5
issn
language eng
recordid cdi_ieee_primary_5469783
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithm design and analysis
bio-inspired algorithms
Convergence
Genetic algorithms
Machine learning algorithms
MANETs
Markov chains
Mobile ad hoc networks
Mobile communication
Routing
Software agents
Stochastic processes
Topology
topology control
title Convergence analysis of genetic algorithms for topology control in MANETs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T05%3A11%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Convergence%20analysis%20of%20genetic%20algorithms%20for%20topology%20control%20in%20MANETs&rft.btitle=2010%20IEEE%20Sarnoff%20Symposium&rft.au=Sahin,%20Cem%20Safak&rft.date=2010-04&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.isbn=1424455928&rft.isbn_list=9781424455928&rft_id=info:doi/10.1109/SARNOF.2010.5469783&rft_dat=%3Cieee_6IE%3E5469783%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424455944&rft.eisbn_list=9781424455942&rft.eisbn_list=1424455936&rft.eisbn_list=9781424455935&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5469783&rfr_iscdi=true