Convergence analysis of genetic algorithms for topology control in MANETs
We describe and verify convergence properties of our forced-based genetic algorithm (FGA) as a decentralized topology control mechanism distributed among software agents. FGA uses local information to guide autonomous mobile nodes over an unknown geographical terrain to obtain a uniform node distrib...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Sahin, Cem Safak Gundry, Stephen Urrea, Elkin Uyar, M Umit Conner, Michael Bertoli, Giorgio Pizzo, Christian |
description | We describe and verify convergence properties of our forced-based genetic algorithm (FGA) as a decentralized topology control mechanism distributed among software agents. FGA uses local information to guide autonomous mobile nodes over an unknown geographical terrain to obtain a uniform node distribution. Analyzing the convergence characteristics of FGA is difficult due to the stochastic nature of GA-based algorithms. Ergodic homogeneous Markov chains are used to describe the convergence characteristics of our FGA. In addition, simulation experiments verify the convergence of our GA-based algorithm. |
doi_str_mv | 10.1109/SARNOF.2010.5469783 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5469783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5469783</ieee_id><sourcerecordid>5469783</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-709648a32328a59b943029e4f9a09cd061065bdcbc94fc743aaf85881475b1ef3</originalsourceid><addsrcrecordid>eNpFkM9qAjEYxFOK0Gp9Ai95AW3-fNnNd1xEW8EqtHuXbExsyrqRZCn49l2o4FyG-R2GYQiZcbbgnOHrV_W5268Xgg1AQYGllg9kzEEAKIUAj_cg9IiMBWOInBWon8g05x82CJRQsnwmm2Xsfl06uc46ajrTXnPINHo6ENcHS017iin03-dMfUy0j5fYxtOV2tj1KbY0dPSj2q3q_EJG3rTZTW8-IfV6VS_f59v922ZZbecBWT8vGRagjRRSaKOwQZBMoAOPhqE9smLYqZqjbSyCtyVIY7xWWnMoVcOdlxMy-68NzrnDJYWzSdfD7Qb5B_AkTyk</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Convergence analysis of genetic algorithms for topology control in MANETs</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sahin, Cem Safak ; Gundry, Stephen ; Urrea, Elkin ; Uyar, M Umit ; Conner, Michael ; Bertoli, Giorgio ; Pizzo, Christian</creator><creatorcontrib>Sahin, Cem Safak ; Gundry, Stephen ; Urrea, Elkin ; Uyar, M Umit ; Conner, Michael ; Bertoli, Giorgio ; Pizzo, Christian</creatorcontrib><description>We describe and verify convergence properties of our forced-based genetic algorithm (FGA) as a decentralized topology control mechanism distributed among software agents. FGA uses local information to guide autonomous mobile nodes over an unknown geographical terrain to obtain a uniform node distribution. Analyzing the convergence characteristics of FGA is difficult due to the stochastic nature of GA-based algorithms. Ergodic homogeneous Markov chains are used to describe the convergence characteristics of our FGA. In addition, simulation experiments verify the convergence of our GA-based algorithm.</description><identifier>ISBN: 1424455928</identifier><identifier>ISBN: 9781424455928</identifier><identifier>EISBN: 1424455944</identifier><identifier>EISBN: 9781424455942</identifier><identifier>EISBN: 1424455936</identifier><identifier>EISBN: 9781424455935</identifier><identifier>DOI: 10.1109/SARNOF.2010.5469783</identifier><identifier>LCCN: 2009910698</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; bio-inspired algorithms ; Convergence ; Genetic algorithms ; Machine learning algorithms ; MANETs ; Markov chains ; Mobile ad hoc networks ; Mobile communication ; Routing ; Software agents ; Stochastic processes ; Topology ; topology control</subject><ispartof>2010 IEEE Sarnoff Symposium, 2010, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5469783$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5469783$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sahin, Cem Safak</creatorcontrib><creatorcontrib>Gundry, Stephen</creatorcontrib><creatorcontrib>Urrea, Elkin</creatorcontrib><creatorcontrib>Uyar, M Umit</creatorcontrib><creatorcontrib>Conner, Michael</creatorcontrib><creatorcontrib>Bertoli, Giorgio</creatorcontrib><creatorcontrib>Pizzo, Christian</creatorcontrib><title>Convergence analysis of genetic algorithms for topology control in MANETs</title><title>2010 IEEE Sarnoff Symposium</title><addtitle>SARNOF</addtitle><description>We describe and verify convergence properties of our forced-based genetic algorithm (FGA) as a decentralized topology control mechanism distributed among software agents. FGA uses local information to guide autonomous mobile nodes over an unknown geographical terrain to obtain a uniform node distribution. Analyzing the convergence characteristics of FGA is difficult due to the stochastic nature of GA-based algorithms. Ergodic homogeneous Markov chains are used to describe the convergence characteristics of our FGA. In addition, simulation experiments verify the convergence of our GA-based algorithm.</description><subject>Algorithm design and analysis</subject><subject>bio-inspired algorithms</subject><subject>Convergence</subject><subject>Genetic algorithms</subject><subject>Machine learning algorithms</subject><subject>MANETs</subject><subject>Markov chains</subject><subject>Mobile ad hoc networks</subject><subject>Mobile communication</subject><subject>Routing</subject><subject>Software agents</subject><subject>Stochastic processes</subject><subject>Topology</subject><subject>topology control</subject><isbn>1424455928</isbn><isbn>9781424455928</isbn><isbn>1424455944</isbn><isbn>9781424455942</isbn><isbn>1424455936</isbn><isbn>9781424455935</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkM9qAjEYxFOK0Gp9Ai95AW3-fNnNd1xEW8EqtHuXbExsyrqRZCn49l2o4FyG-R2GYQiZcbbgnOHrV_W5268Xgg1AQYGllg9kzEEAKIUAj_cg9IiMBWOInBWon8g05x82CJRQsnwmm2Xsfl06uc46ajrTXnPINHo6ENcHS017iin03-dMfUy0j5fYxtOV2tj1KbY0dPSj2q3q_EJG3rTZTW8-IfV6VS_f59v922ZZbecBWT8vGRagjRRSaKOwQZBMoAOPhqE9smLYqZqjbSyCtyVIY7xWWnMoVcOdlxMy-68NzrnDJYWzSdfD7Qb5B_AkTyk</recordid><startdate>201004</startdate><enddate>201004</enddate><creator>Sahin, Cem Safak</creator><creator>Gundry, Stephen</creator><creator>Urrea, Elkin</creator><creator>Uyar, M Umit</creator><creator>Conner, Michael</creator><creator>Bertoli, Giorgio</creator><creator>Pizzo, Christian</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201004</creationdate><title>Convergence analysis of genetic algorithms for topology control in MANETs</title><author>Sahin, Cem Safak ; Gundry, Stephen ; Urrea, Elkin ; Uyar, M Umit ; Conner, Michael ; Bertoli, Giorgio ; Pizzo, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-709648a32328a59b943029e4f9a09cd061065bdcbc94fc743aaf85881475b1ef3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithm design and analysis</topic><topic>bio-inspired algorithms</topic><topic>Convergence</topic><topic>Genetic algorithms</topic><topic>Machine learning algorithms</topic><topic>MANETs</topic><topic>Markov chains</topic><topic>Mobile ad hoc networks</topic><topic>Mobile communication</topic><topic>Routing</topic><topic>Software agents</topic><topic>Stochastic processes</topic><topic>Topology</topic><topic>topology control</topic><toplevel>online_resources</toplevel><creatorcontrib>Sahin, Cem Safak</creatorcontrib><creatorcontrib>Gundry, Stephen</creatorcontrib><creatorcontrib>Urrea, Elkin</creatorcontrib><creatorcontrib>Uyar, M Umit</creatorcontrib><creatorcontrib>Conner, Michael</creatorcontrib><creatorcontrib>Bertoli, Giorgio</creatorcontrib><creatorcontrib>Pizzo, Christian</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sahin, Cem Safak</au><au>Gundry, Stephen</au><au>Urrea, Elkin</au><au>Uyar, M Umit</au><au>Conner, Michael</au><au>Bertoli, Giorgio</au><au>Pizzo, Christian</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Convergence analysis of genetic algorithms for topology control in MANETs</atitle><btitle>2010 IEEE Sarnoff Symposium</btitle><stitle>SARNOF</stitle><date>2010-04</date><risdate>2010</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><isbn>1424455928</isbn><isbn>9781424455928</isbn><eisbn>1424455944</eisbn><eisbn>9781424455942</eisbn><eisbn>1424455936</eisbn><eisbn>9781424455935</eisbn><abstract>We describe and verify convergence properties of our forced-based genetic algorithm (FGA) as a decentralized topology control mechanism distributed among software agents. FGA uses local information to guide autonomous mobile nodes over an unknown geographical terrain to obtain a uniform node distribution. Analyzing the convergence characteristics of FGA is difficult due to the stochastic nature of GA-based algorithms. Ergodic homogeneous Markov chains are used to describe the convergence characteristics of our FGA. In addition, simulation experiments verify the convergence of our GA-based algorithm.</abstract><pub>IEEE</pub><doi>10.1109/SARNOF.2010.5469783</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1424455928 |
ispartof | 2010 IEEE Sarnoff Symposium, 2010, p.1-5 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5469783 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Algorithm design and analysis bio-inspired algorithms Convergence Genetic algorithms Machine learning algorithms MANETs Markov chains Mobile ad hoc networks Mobile communication Routing Software agents Stochastic processes Topology topology control |
title | Convergence analysis of genetic algorithms for topology control in MANETs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T05%3A11%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Convergence%20analysis%20of%20genetic%20algorithms%20for%20topology%20control%20in%20MANETs&rft.btitle=2010%20IEEE%20Sarnoff%20Symposium&rft.au=Sahin,%20Cem%20Safak&rft.date=2010-04&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.isbn=1424455928&rft.isbn_list=9781424455928&rft_id=info:doi/10.1109/SARNOF.2010.5469783&rft_dat=%3Cieee_6IE%3E5469783%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424455944&rft.eisbn_list=9781424455942&rft.eisbn_list=1424455936&rft.eisbn_list=9781424455935&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5469783&rfr_iscdi=true |