Convergence analysis of genetic algorithms for topology control in MANETs

We describe and verify convergence properties of our forced-based genetic algorithm (FGA) as a decentralized topology control mechanism distributed among software agents. FGA uses local information to guide autonomous mobile nodes over an unknown geographical terrain to obtain a uniform node distrib...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sahin, Cem Safak, Gundry, Stephen, Urrea, Elkin, Uyar, M Umit, Conner, Michael, Bertoli, Giorgio, Pizzo, Christian
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We describe and verify convergence properties of our forced-based genetic algorithm (FGA) as a decentralized topology control mechanism distributed among software agents. FGA uses local information to guide autonomous mobile nodes over an unknown geographical terrain to obtain a uniform node distribution. Analyzing the convergence characteristics of FGA is difficult due to the stochastic nature of GA-based algorithms. Ergodic homogeneous Markov chains are used to describe the convergence characteristics of our FGA. In addition, simulation experiments verify the convergence of our GA-based algorithm.
DOI:10.1109/SARNOF.2010.5469783