Design and development of a small scale system for harvesting the lightning stroke using the impulse voltage generator at HV lab, UTeM
This paper describes the design and development of a small scale system for harvesting the lightning stroke using the single impulse voltage generator. The testing conducted at high voltage lab at Universiti Teknikal Malaysia Melaka (UTeM). A new source of renewable energy from lightning return stro...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper describes the design and development of a small scale system for harvesting the lightning stroke using the single impulse voltage generator. The testing conducted at high voltage lab at Universiti Teknikal Malaysia Melaka (UTeM). A new source of renewable energy from lightning return stroke is a possible contributor to solve the energy crisis. The main problem in harvesting the lightning energy is to capture and store the energy within a very short time. Hence, computer simulation works is done as the preliminary effort intended for the laboratory set up as well as to understand and verify the operational system principle. A small-scale laboratory is set up based on natural characteristics of lightning to determine the performance and capability of the sample capacitor accurately, since a capacitor nowadays becomes the most widespread, economical and reliable energy storage device. The capacitors are subjected to 1.2/50 ¿s single-stroke impulse voltages generated by a single stage impulse generator. The proposed system shows that the impulse voltage able to transferred and stored the energy in the storage capacitors. Hence, it gives a positive indicator to the proposed system referring to the concept of capturing energy from lightning return strokes, which can be a potential source of renewable energy. |
---|---|
DOI: | 10.1109/ICCAE.2010.5451490 |