UAS pilot support for departure, approach and airfield operations

Unmanned Aerial Systems (UAS) have great potential to be used in a wide variety of civil applications such as environmental applications, emergency situations, surveillance tasks and more. The development of Flight Control Systems (FCS) coupled with the availability of other Commercial Off-The Shelf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Pastor, Enric, Prats, Xavier, Royo, Pablo, Delgado, Luis, Santamaria, Eduard
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Unmanned Aerial Systems (UAS) have great potential to be used in a wide variety of civil applications such as environmental applications, emergency situations, surveillance tasks and more. The development of Flight Control Systems (FCS) coupled with the availability of other Commercial Off-The Shelf (COTS) components is enabling the introduction of UAS into the civil market. The sophistication of existing FCS is also making these systems accessible to end users with little aeronautics expertise. However, much work remains to be done to deliver systems that can be properly integrated in standard aeronautical procedures used by manned aviation. In previous research advances have been proposed in the flight plan capabilities by offering semantically much richer constructs than those present in most current UAS autopilots[1]. The introduced flight plan is organized as a set of stages, each one corresponding to a different flight phase. Each stage contains a structured collection of legs inspired by current practices in Area Navigation (RNAV[2], [3]). However, the most critical parts of any flight, the depart and approach operations in a integrated airspace remain mostly unexplored. This paper introduces an assessment of both operations for UAS operating in VFR and IFR modes. Problems and potential solutions are proposed, as well as an automating strategy that should greatly reduce pilot workload. Although the final objective is a full autonomous operation, the pilot is always kept in the control loop and therefore HMI aspects are also considered.
ISSN:1095-323X
2996-2358
DOI:10.1109/AERO.2010.5446796