Current-sharing among parallel-connected systems of active power factor correction
This paper presents active current-sharing control approaches for parallel-connected AC-to-DC power system architectures consisting of multiple power-processing channels, each of which comprises a cascade connection of a front-end active power factor correction (APFC) stage and an isolated back-end...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents active current-sharing control approaches for parallel-connected AC-to-DC power system architectures consisting of multiple power-processing channels, each of which comprises a cascade connection of a front-end active power factor correction (APFC) stage and an isolated back-end DC-DC converter. By employing a current-sharing method to the back-end converters, current-mode commercial-off-the-shelf (COTS) DC-DC converters can provide uniform current-sharing among all power-processing channels while retaining stiff system output voltage regulation without control conflicts among output voltage regulators distributed in the converters. This results in uniform power-sharing among the front-end APFC stages that are connected to either a common AC power source or independent AC power sources that may possess different frequencies of operation (i.e. 50 Hz versus 60 Hz). Through computer simulation and an experimental prototype, current-sharing control for the parallel-connected APFC architectures is validated and successfully applied. |
---|---|
ISSN: | 1095-323X 2996-2358 |
DOI: | 10.1109/AERO.2010.5446716 |