A 2D Ultrasonic array design incorporating hexagonal-shaped elements and triangular-cut piezocomposite substructure for NDE applications
Contemporary 2D Ultrasonic arrays suffer from low SNR and limited steering capabilities. Yet, there is a great desire in the industry to increase the operational frequency, in order to enhance their volumetric imaging resolution. State-of-the art arrays use an orthogonal matrix of rectangular elemen...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Contemporary 2D Ultrasonic arrays suffer from low SNR and limited steering capabilities. Yet, there is a great desire in the industry to increase the operational frequency, in order to enhance their volumetric imaging resolution. State-of-the art arrays use an orthogonal matrix of rectangular elements as this is a natural step forward from the conventional 1D array structure. The objective of this work is to evaluate properties of triangular, rather than rectangular ceramic pillars in a 1-3 connectivity piezoelectric composite for application in a hexagonal-element 2D array. A 3MHz prototype device exploiting new hexagonal substructure have been manufactured. Measured mechanical cross-coupling level is -21.9dB between neighbouring hexagonal elements, providing validation of simulation result. Corroboration between measured and FE modelled device behaviour is demonstrated. |
---|---|
ISSN: | 1051-0117 |
DOI: | 10.1109/ULTSYM.2009.5441447 |