Universal Repetitive Learning Control for Nonparametric Uncertainty and Unknown State-Dependent Control Direction Matrix

We propose a continuous universal repetitive learning control to track periodic trajectory for a class of nonlinear dynamical systems with nonparametric uncertainty and unknown state-dependent control direction matrix. The proposed controller is an integration of high-gain feedback, repetitive learn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2010-07, Vol.55 (7), p.1710-1715
Hauptverfasser: Zaiyue Yang, Yam, S C P, Li, L K, Yiwen Wang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a continuous universal repetitive learning control to track periodic trajectory for a class of nonlinear dynamical systems with nonparametric uncertainty and unknown state-dependent control direction matrix. The proposed controller is an integration of high-gain feedback, repetitive learning and Nussbaum gain matrix selector. The control signal is always continuous, thus it avoids the potential chattering effect caused by discontinuity. Asymptotic convergence of the tracking error is achieved by the controller, and the control performance is illustrated by simulation. Although the proposed method is derived for input-state systems, it can be readily extended to multi-input-multi-output systems under appropriate assumption.
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.2010.2046935