Noise Adaptive Training for Robust Automatic Speech Recognition

In traditional methods for noise robust automatic speech recognition, the acoustic models are typically trained using clean speech or using multi-condition data that is processed by the same feature enhancement algorithm expected to be used in decoding. In this paper, we propose a noise adaptive tra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on audio, speech, and language processing speech, and language processing, 2010-11, Vol.18 (8), p.1889-1901
Hauptverfasser: Kalinli, O, Seltzer, M L, Droppo, J, Acero, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In traditional methods for noise robust automatic speech recognition, the acoustic models are typically trained using clean speech or using multi-condition data that is processed by the same feature enhancement algorithm expected to be used in decoding. In this paper, we propose a noise adaptive training (NAT) algorithm that can be applied to all training data that normalizes the environmental distortion as part of the model training. In contrast to feature enhancement methods, NAT estimates the underlying "pseudo-clean" model parameters directly without relying on point estimates of the clean speech features as an intermediate step. The pseudo-clean model parameters learned with NAT are later used with vector Taylor series (VTS) model adaptation for decoding noisy utterances at test time. Experiments performed on the Aurora 2 and Aurora 3 tasks demonstrate that the proposed NAT method obtain relative improvements of 18.83% and 32.02%, respectively, over VTS model adaptation.
ISSN:1558-7916
2329-9290
1558-7924
2329-9304
DOI:10.1109/TASL.2010.2040522