A 31 ns Random Cycle VCAT-Based 4F ^ DRAM With Manufacturability and Enhanced Cell Efficiency
A functional 4F 2 DRAM was implemented based on the technology combination of stack capacitor and surrounding-gate vertical channel access transistor (VCAT). A high performance VCAT has been developed showing excellent Ion-Ioff characteristics with more than twice turn-on current compared with the c...
Gespeichert in:
Veröffentlicht in: | IEEE journal of solid-state circuits 2010-04, Vol.45 (4), p.880-888 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A functional 4F 2 DRAM was implemented based on the technology combination of stack capacitor and surrounding-gate vertical channel access transistor (VCAT). A high performance VCAT has been developed showing excellent Ion-Ioff characteristics with more than twice turn-on current compared with the conventional recessed channel access transistor (RCAT). A new design methodology has been applied to accommodate 4F 2 cell array, achieving both high performance and manufacturability. Especially, core block restructuring, word line (WL) strapping and hybrid bit line (BL) sense-amplifier (SA) scheme play an important role for enhancing AC performance and cell efficiency. A 50 Mb test chip was fabricated by 80 nm design rule and the measured random cycle time (tRC) and read latency (tRCD) are 31 ns and 8 ns, respectively. The median retention time for 88 Kb sample array is about 30 s at 90°C under dynamic operations. The core array size is reduced by 29% compared with conventional 6F 2 DRAM. |
---|---|
ISSN: | 0018-9200 1558-173X |
DOI: | 10.1109/JSSC.2010.2040229 |