Better than a petaflop: The power of efficient experimental design
Recent advances in high-performance computing have pushed computational capabilities to a petaflop (a thousand trillion operations per second) in a single computing cluster. This breakthrough has been hailed as a way to fundamentally change science and engineering by letting people perform experimen...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recent advances in high-performance computing have pushed computational capabilities to a petaflop (a thousand trillion operations per second) in a single computing cluster. This breakthrough has been hailed as a way to fundamentally change science and engineering by letting people perform experiments that were previously beyond reach. But for those interested in exploring the I/O behavior of their simulation model, efficient experimental design has a much higher payoff at a much lower cost. A well-designed experiment allows the analyst to examine many more factors than would otherwise be possible, while providing insights that cannot be gleaned from trial-and-error approaches or by sampling factors one at a time. We present the basic concepts of experimental design, the types of goals it can address, and why it is such an important and useful tool for simulation. Ideally, this tutorial will entice you to use experimental designs in your upcoming simulation studies. |
---|---|
ISSN: | 0891-7736 1558-4305 |
DOI: | 10.1109/WSC.2009.5429316 |