A bandwidth-aware memory-subsystem resource management using non-invasive resource profilers for large CMP systems

By integrating multiple cores in a single chip, Chip Multiprocessors (CMP) provide an attractive approach to improve both system throughput and efficiency. This integration allows the sharing of on-chip resources which may lead to destructive interference between the executing workloads. Memorysubsy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kaseridis, Dimitris, Stuecheli, Jeffrey, Jian Chen, John, Lizy K
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:By integrating multiple cores in a single chip, Chip Multiprocessors (CMP) provide an attractive approach to improve both system throughput and efficiency. This integration allows the sharing of on-chip resources which may lead to destructive interference between the executing workloads. Memorysubsystem is an important shared resource that contributes significantly to the overall throughput and power consumption. In order to prevent destructive interference, the cache capacity and memory bandwidth requirements of the last level cache have to be controlled. While previously proposed schemes focus on resource sharing within a chip, we explore additional possibilities both inside and outside a single chip. We propose a dynamic memory-subsystem resource management scheme that considers both cache capacity and memory bandwidth contention in large multi-chip CMP systems. Our approach uses low overhead, non-invasive resource profilers that are based on Mattson's stack distance algorithm to project each core's resource requirements and guide our cache partitioning algorithms. Our bandwidth-aware algorithm seeks for throughput optimizations among multiple chips by migrating workloads from the most resource-overcommitted chips to the ones with more available resources. Use of bandwidth as a criterion results in an overall 18% reduction in memory bandwidth along with a 7.9% reduction in miss rate, compared to existing resource management schemes. Using a cycle-accurate full system simulator, our approach achieved an average improvement of 8.5% on throughput.
ISSN:1530-0897
2378-203X
DOI:10.1109/HPCA.2010.5416654