Cubic-splines neural network- based system for Image Retrieval
Research in content-based image retrieval (CBIR) shows that high-level semantic concepts in image cannot be constantly depicted using low-level image features. So the process of designing a CBIR system should take into account diminishing the existing gap between low-level visual image features and...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Research in content-based image retrieval (CBIR) shows that high-level semantic concepts in image cannot be constantly depicted using low-level image features. So the process of designing a CBIR system should take into account diminishing the existing gap between low-level visual image features and the high-level semantic concepts. In this paper, we propose a new architecture for a CBIR system named SNNIR (splines neural network-based image retrieval). SNNIR system makes use of a rapid and precise neural model. This model employs a cubic-splines activation function. By using the spline neural model, the gap between the low-level visual features and the high-level concepts is minimized. Experimental results show that the proposed system achieves high accuracy and effectiveness in terms of precision and recall compared with other CBIR systems. |
---|---|
ISSN: | 1522-4880 2381-8549 |
DOI: | 10.1109/ICIP.2009.5413561 |