Spatio-Temporal Tube Kernel for actor retrieval

This paper presents an actor video retrieval system based on face video-tubes extraction and representation with sets of temporally coherent features. Visual features, SIFT points, are tracked along a video shot, resulting in sets of feature point chains (spatio-temporal tubes). These tubes are then...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Zhao, S., Precioso, F., Cord, M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents an actor video retrieval system based on face video-tubes extraction and representation with sets of temporally coherent features. Visual features, SIFT points, are tracked along a video shot, resulting in sets of feature point chains (spatio-temporal tubes). These tubes are then classified and retrieved using a kernel-based SVM learning framework for actor retrieval in a movie. In this paper, we present optimized feature tubes, we extend our feature representation with spatial location of SIFT points and we describe the new Spatio-Temporal Tube Kernel (STTK) of our content-based retrieval system. Our approach has been tested on a real movie and proved to be faster and more robust for actor retrieval task.
ISSN:1522-4880
2381-8549
DOI:10.1109/ICIP.2009.5413540